本月累计签到次数:

今天获取 积分

电感

电感

276 浏览

提高电感线圈Q值得七个绝招

智能制造类 乌龟大师 2017-01-10 16:47 发表了文章 来自相关话题

品质因数Q是反映线圈质量的重要参数,提高线圈的Q值,可以说是绕制线圈要注意的重点之一。那么,如何提高绕制线圈的Q值呢,下面介绍具体的方法:

(1)根据工作频率,选用线圈的导线

工作于低频段的电感线圈,一般采用漆包线等带绝缘的导线绕制。工作频率高于几万赫,而低于2MHz的电路中,采用多股绝缘的导线绕制线圈,这样,可有效地增加导体的表面积,从而可以克服集肤效应的影响,使Q值比相同截面积的单根导线绕制的线圈高30%-50%。在频率高于2MHz的电路中,电感线圈应采用单根粗导线绕制,导线的直径一般为0.3mm-1.5mm。采用间绕的电感线圈,常用镀银铜线绕制,以增加导线表面的导电性。这时不宜选用多股导线绕制,因为多股绝缘线在频率很高时,线圈绝缘介质将引起额外的损耗,其效果反不如单根导线好。

(2)选用优质的线圈骨架,减少介质损耗

在频率较高的场合,如短波波段,因为普通的线圈骨架,其介质损耗显著增加,因此,应选用高频介质材料,如高频瓷、聚四氟乙烯、聚苯乙烯等作为骨架,并采用间绕法绕制。

(3)选择合理的线圈尺寸,可以减少损耗外径一定的单层线圈(φ20mm-30mm),当绕组长度 L与外径 D的比值 L/D=0.7时,其损耗最小;外径一定的多层线圈L/ D=0.2-0.5,用t/D=0.25-0.1时,其损耗最小。绕组厚度t、绕组长度L和外径D之间满足3t+2L=D的情况下,损耗也最小。采用屏蔽罩的线圈,其L/D=0.8-1.2时最佳。

(4)选定合理屏蔽罩的直径

用屏蔽罩,会增加线圈的损耗,使Q值降低,因此屏蔽罩的尺寸不宜过小。然而屏蔽罩的尺寸过大,会增大体积,因而要选定合理屏蔽罩的直径尺寸。

当屏蔽罩直径Ds与线圈直径 D之比满足如下数值即 Ds/D=1.6-2.5时,Q值降低不大于10%。

(5)采用磁芯可使线圈圈数显著减少

线圈中采用磁芯,减少了线圈的圈数,不仅减小线圈的电阻值,有利Q值的提高,而且缩小了线圈的体积。

(6)线圈直径适当选大些,利于减小损耗在可能的条件下,线圈直径选得大一些,体积增大了一些,有利于减小线圈的损耗。一般接收机,单层线圈直径取12mm-30mm;多层线圈取6mm-13mm,但从体积考虑,也不宜超过20mm-25mm的范围。

(7)减小绕制线圈的分布电容

尽量采用无骨架方式绕制线圈,或者绕制在凸筋式骨架上的线圈,能减小分布电容15%-20%;分段绕法能减小多层线圈的分布电容的1/3~l/2。对于多层线圈来说,直径D越小,绕组长度L越小或绕组厚度t越大,则分布电容越小。应当指出的是:经过漫渍和封涂后的线圈,其分布电容将增大20%-30%。

总之,绕制线圈,始终把提高Q值,降低损耗,作为考虑的重点。
 
来源:网络 查看全部
品质因数Q是反映线圈质量的重要参数,提高线圈的Q值,可以说是绕制线圈要注意的重点之一。那么,如何提高绕制线圈的Q值呢,下面介绍具体的方法:

(1)根据工作频率,选用线圈的导线

工作于低频段的电感线圈,一般采用漆包线等带绝缘的导线绕制。工作频率高于几万赫,而低于2MHz的电路中,采用多股绝缘的导线绕制线圈,这样,可有效地增加导体的表面积,从而可以克服集肤效应的影响,使Q值比相同截面积的单根导线绕制的线圈高30%-50%。在频率高于2MHz的电路中,电感线圈应采用单根粗导线绕制,导线的直径一般为0.3mm-1.5mm。采用间绕的电感线圈,常用镀银铜线绕制,以增加导线表面的导电性。这时不宜选用多股导线绕制,因为多股绝缘线在频率很高时,线圈绝缘介质将引起额外的损耗,其效果反不如单根导线好。

(2)选用优质的线圈骨架,减少介质损耗

在频率较高的场合,如短波波段,因为普通的线圈骨架,其介质损耗显著增加,因此,应选用高频介质材料,如高频瓷、聚四氟乙烯、聚苯乙烯等作为骨架,并采用间绕法绕制。

(3)选择合理的线圈尺寸,可以减少损耗外径一定的单层线圈(φ20mm-30mm),当绕组长度 L与外径 D的比值 L/D=0.7时,其损耗最小;外径一定的多层线圈L/ D=0.2-0.5,用t/D=0.25-0.1时,其损耗最小。绕组厚度t、绕组长度L和外径D之间满足3t+2L=D的情况下,损耗也最小。采用屏蔽罩的线圈,其L/D=0.8-1.2时最佳。

(4)选定合理屏蔽罩的直径

用屏蔽罩,会增加线圈的损耗,使Q值降低,因此屏蔽罩的尺寸不宜过小。然而屏蔽罩的尺寸过大,会增大体积,因而要选定合理屏蔽罩的直径尺寸。

当屏蔽罩直径Ds与线圈直径 D之比满足如下数值即 Ds/D=1.6-2.5时,Q值降低不大于10%。

(5)采用磁芯可使线圈圈数显著减少

线圈中采用磁芯,减少了线圈的圈数,不仅减小线圈的电阻值,有利Q值的提高,而且缩小了线圈的体积。

(6)线圈直径适当选大些,利于减小损耗在可能的条件下,线圈直径选得大一些,体积增大了一些,有利于减小线圈的损耗。一般接收机,单层线圈直径取12mm-30mm;多层线圈取6mm-13mm,但从体积考虑,也不宜超过20mm-25mm的范围。

(7)减小绕制线圈的分布电容

尽量采用无骨架方式绕制线圈,或者绕制在凸筋式骨架上的线圈,能减小分布电容15%-20%;分段绕法能减小多层线圈的分布电容的1/3~l/2。对于多层线圈来说,直径D越小,绕组长度L越小或绕组厚度t越大,则分布电容越小。应当指出的是:经过漫渍和封涂后的线圈,其分布电容将增大20%-30%。

总之,绕制线圈,始终把提高Q值,降低损耗,作为考虑的重点。
 
来源:网络
704 浏览

电感--和电流对着干的小精灵

电气控制类 品管人生 2016-10-25 16:20 发表了文章 来自相关话题

和电流对着干?什么意思?呵呵,这是电感元件的一个牛脾气,正是这个牛脾气,在很多地方就不能离开它!

还是先从认识电感开始把!电感实际上构造很简单,拿一根漆包线绕成一个线圈就是一个电感!用磁块做成架把漆包线绕上去就是磁珠电杆,mpn里面常见的都是这个的样子:






在电路图中电感一般用L表示,就像电阻用R、电容用C表示一样,你可以看看电路图中有哪个元件旁边标有L的并且用符号:





 
来表示的就是电感了,在这里需要注意的是,要与这样的






符号区别开,这个符号是电阻的一种表示,千万不要看成是电感了!电感是不分正负极的,在电路中不用分哪边接正电哪边接负电(在某些地方是要分相位的,即电感的线圈绕向,mpn中不用考虑)!电感的大小是用“亨利”来作单位的,简称亨(H),比它小的单位还有毫亨(mH)和微亨(uH),它们之间是以千换算的!

电感到底有什么牛脾气呢?为什么说它给电流对着干呢?原来啊电感在电路当电流要通过它的一瞬间,它就会自己产生一个电压,这个电压的电流方向刚好和要通过去的电流的方向相反——顶牛了!不过这只是一瞬间的事情,随后就没有了这种抵抗了!当在电路中通过电感的电流要断开了的时候,电感又产生一个电压,产生的电流刚好和要断开的电流方向相反——它又不让电流断开!又顶上牛了,呵呵,说它和电流对着干没有委屈它吧?正是电感的这种牛脾气让我们就可以利用它发挥一定的作用,你想一想我们上一讲讲到在电路中有一种方向不断变化着的交流电,这个交流不断变化着的东西有时候我们不需要它,有时候我们又需要它,聪明的人类就自然而然的想到了利用电感的这个牛脾气了,交流电流方向不断改变,电感就不断地抵抗,其结果是方向不断变化的交流电就不能通过电感,直流电由于电流方向不会变化,所以就可以顺利通过电感,电感的大小对交流变化快速度慢的电流阻碍作用也不尽相同:同一个电感对变化快的电流阻挡大对变化慢的交流电阻挡小;对同一个变化速度的交流电来说感值大的阻碍大,感值小的就阻碍小!呵呵,我们通过利用电感的这个性格,轻而易举的就把电路中的交流电和直流电分开了!讲到这里可能大家又想起了电容,电容的特性是“隔直流,同交流”,那么电感的特性就是刚好和电容相反:隔交流,通直流,电路中正是由于电感和电容的有机配合,才让电路中的交流和直流电很容易的分别开来!当然电感的这个特性还有一些其它的作用,这些需要你升级学习,慢慢领会了!

升级理论:要学习透彻电感理论,要认真学习弄通“楞次定律”!

什么是电感器? 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。

一、自感与互感

(一)自感

当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。

(二)互感

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。

二、电感器的作用

电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路;升压,降压也往往离不开它!

现在分析几个电感电路,具体分析一下它们各自在电路中所起的作用:






图一是一个mp3中的vcc和avcc电源滤波电路,vcc和avcc的电压都是3v,vcc是给主控供电的,要求电压稳定并且是纯净的直流电成分,不允许有交流电成分!avcc是给音频放大电路提供能源的,要求有足够的直流电能量提供!可能要问,两个电压即使都是3v为什么还要接上一个电感L1呢?音频放大电路在放大声音的时候,随着高音低音,音大音小的变化,所需要的电流也会大小变化剧烈,电感电容虽说脾气相反但有一个共同的地方就是电感和电容两端的电压不能突变,所以电感L1和两边的电容有一个稳定vcc和avcc电压的作用,也就是声音放大造成电压波动不至于影响供给主控工作的vcc电压的波动;除了这个作用,由L1和两边的电容还有第二个作用,那就是滤波作用,由于声音放大电路里很容易参杂进去交流成分,这个交流成分是决不能进入到vcc电压进入主控的,L1就是为了阻止交流成分进入的主要元件,受到阻挡的交流电成分不能通过L1,就只好乖乖的通过C5和CE5进入地而消失了!C5和CE5+L1+C4和CE4组成的电路又叫“π型”滤波器!






图二是mp3电路中的屏背灯升压电路,mp3中的屏背景灯一般是由2-3个LED灯管头尾相接串接起来的,一个LED灯管需要3v的直流电压才能够点亮,2个串起来就需要6v电压,3个串起来就要9v电压才能够全部点亮!我们知道mp3里的锂电池最高电压也就是4.2v,正常工作电压只有3.7v,这个电压根本没有办法点亮2个以上串接起来的LED灯管,于是就必须把3.7v的电压升高到6v或者9v来点亮LED灯管!上面这个电路就是这样的升压电路。电路中U7是一个升压集成块,它与L7、C28等组成一个震荡的升高的交流电电压,然后再由D2这个元件(叫二极管,下一讲我们就将讲它的作用)把升高的交流电再变成直流电去点亮LED灯管!所以这里的L7电感是升压谐振电感!图三图三是mp3耳机电路有L4、L5、L6三个磁珠电感,其中L4、L5是为了阻挡混在声音中的变化速度快得人耳不能听到的交流成分(叫超声波),让它通过电容C31、C32入地,不再进入耳机让我们感到声音不纯净和疲劳!我们知道,mp3收音机天线是用耳机线做天线的,L6这个磁珠电感的作用就是阻挡耳机线送过来的无线电波信号不能让它进入地只能进入调频收音块的天线接收脚!






图三中U7的6脚是电源输入脚,5脚是退藕,4脚是控制U7的工作状态,高电位(有电压)的时候工作屏背景灯亮,低电位0v的时候停止工作,屏背景灯熄灭,省电状态;3脚是输出补偿,2脚接地,1脚接电感震荡输出。当电感值一定的时候,震荡的速度越快,电流方向变化的速度也越快,输出电压就越高!图三中的 R22是补偿电阻E3、E4、E5是静电高压泻放电阻,也可以不接!
 
 
 
 
来源:工控维修那些事儿
智造家提供 查看全部
和电流对着干?什么意思?呵呵,这是电感元件的一个牛脾气,正是这个牛脾气,在很多地方就不能离开它!

还是先从认识电感开始把!电感实际上构造很简单,拿一根漆包线绕成一个线圈就是一个电感!用磁块做成架把漆包线绕上去就是磁珠电杆,mpn里面常见的都是这个的样子:

6.1_.JPG


在电路图中电感一般用L表示,就像电阻用R、电容用C表示一样,你可以看看电路图中有哪个元件旁边标有L的并且用符号:

6.2_.JPG

 
来表示的就是电感了,在这里需要注意的是,要与这样的

6.3_.JPG


符号区别开,这个符号是电阻的一种表示,千万不要看成是电感了!电感是不分正负极的,在电路中不用分哪边接正电哪边接负电(在某些地方是要分相位的,即电感的线圈绕向,mpn中不用考虑)!电感的大小是用“亨利”来作单位的,简称亨(H),比它小的单位还有毫亨(mH)和微亨(uH),它们之间是以千换算的!

电感到底有什么牛脾气呢?为什么说它给电流对着干呢?原来啊电感在电路当电流要通过它的一瞬间,它就会自己产生一个电压,这个电压的电流方向刚好和要通过去的电流的方向相反——顶牛了!不过这只是一瞬间的事情,随后就没有了这种抵抗了!当在电路中通过电感的电流要断开了的时候,电感又产生一个电压,产生的电流刚好和要断开的电流方向相反——它又不让电流断开!又顶上牛了,呵呵,说它和电流对着干没有委屈它吧?正是电感的这种牛脾气让我们就可以利用它发挥一定的作用,你想一想我们上一讲讲到在电路中有一种方向不断变化着的交流电,这个交流不断变化着的东西有时候我们不需要它,有时候我们又需要它,聪明的人类就自然而然的想到了利用电感的这个牛脾气了,交流电流方向不断改变,电感就不断地抵抗,其结果是方向不断变化的交流电就不能通过电感,直流电由于电流方向不会变化,所以就可以顺利通过电感,电感的大小对交流变化快速度慢的电流阻碍作用也不尽相同:同一个电感对变化快的电流阻挡大对变化慢的交流电阻挡小;对同一个变化速度的交流电来说感值大的阻碍大,感值小的就阻碍小!呵呵,我们通过利用电感的这个性格,轻而易举的就把电路中的交流电和直流电分开了!讲到这里可能大家又想起了电容,电容的特性是“隔直流,同交流”,那么电感的特性就是刚好和电容相反:隔交流,通直流,电路中正是由于电感和电容的有机配合,才让电路中的交流和直流电很容易的分别开来!当然电感的这个特性还有一些其它的作用,这些需要你升级学习,慢慢领会了!

升级理论:要学习透彻电感理论,要认真学习弄通“楞次定律”!

什么是电感器? 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。

一、自感与互感

(一)自感

当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。

(二)互感

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。

二、电感器的作用

电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路;升压,降压也往往离不开它!

现在分析几个电感电路,具体分析一下它们各自在电路中所起的作用:

6.4_.JPG


图一是一个mp3中的vcc和avcc电源滤波电路,vcc和avcc的电压都是3v,vcc是给主控供电的,要求电压稳定并且是纯净的直流电成分,不允许有交流电成分!avcc是给音频放大电路提供能源的,要求有足够的直流电能量提供!可能要问,两个电压即使都是3v为什么还要接上一个电感L1呢?音频放大电路在放大声音的时候,随着高音低音,音大音小的变化,所需要的电流也会大小变化剧烈,电感电容虽说脾气相反但有一个共同的地方就是电感和电容两端的电压不能突变,所以电感L1和两边的电容有一个稳定vcc和avcc电压的作用,也就是声音放大造成电压波动不至于影响供给主控工作的vcc电压的波动;除了这个作用,由L1和两边的电容还有第二个作用,那就是滤波作用,由于声音放大电路里很容易参杂进去交流成分,这个交流成分是决不能进入到vcc电压进入主控的,L1就是为了阻止交流成分进入的主要元件,受到阻挡的交流电成分不能通过L1,就只好乖乖的通过C5和CE5进入地而消失了!C5和CE5+L1+C4和CE4组成的电路又叫“π型”滤波器!

6.5_.JPG


图二是mp3电路中的屏背灯升压电路,mp3中的屏背景灯一般是由2-3个LED灯管头尾相接串接起来的,一个LED灯管需要3v的直流电压才能够点亮,2个串起来就需要6v电压,3个串起来就要9v电压才能够全部点亮!我们知道mp3里的锂电池最高电压也就是4.2v,正常工作电压只有3.7v,这个电压根本没有办法点亮2个以上串接起来的LED灯管,于是就必须把3.7v的电压升高到6v或者9v来点亮LED灯管!上面这个电路就是这样的升压电路。电路中U7是一个升压集成块,它与L7、C28等组成一个震荡的升高的交流电电压,然后再由D2这个元件(叫二极管,下一讲我们就将讲它的作用)把升高的交流电再变成直流电去点亮LED灯管!所以这里的L7电感是升压谐振电感!图三图三是mp3耳机电路有L4、L5、L6三个磁珠电感,其中L4、L5是为了阻挡混在声音中的变化速度快得人耳不能听到的交流成分(叫超声波),让它通过电容C31、C32入地,不再进入耳机让我们感到声音不纯净和疲劳!我们知道,mp3收音机天线是用耳机线做天线的,L6这个磁珠电感的作用就是阻挡耳机线送过来的无线电波信号不能让它进入地只能进入调频收音块的天线接收脚!

6.6_.JPG


图三中U7的6脚是电源输入脚,5脚是退藕,4脚是控制U7的工作状态,高电位(有电压)的时候工作屏背景灯亮,低电位0v的时候停止工作,屏背景灯熄灭,省电状态;3脚是输出补偿,2脚接地,1脚接电感震荡输出。当电感值一定的时候,震荡的速度越快,电流方向变化的速度也越快,输出电压就越高!图三中的 R22是补偿电阻E3、E4、E5是静电高压泻放电阻,也可以不接!
 
 
 
 
来源:工控维修那些事儿
智造家提供
469 浏览

电感的重要参数之Q值

设备硬件类 善思惟 2016-10-20 14:46 发表了文章 来自相关话题

什么是电感Q值
1、
电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

根据使用场合的不同,对品质因数Q的要求也不同。对调谐回路中的电感线圈,Q值要求较高,因为Q值越高,回路的损耗就越小,回路的效率就越高;对鹅合线圈来说,Q值可以低一些;而对于低频或高频扼流圈,则可以不做要求。

实际上,Q值的提高往往受到一些因素的限制,如导线的直流电阻、线圈骨架的介质损耗、铁心和屏蔽引起的损耗以及高频工作时的集肤效应等。因此,线圈的Q值不可能做得很高,通常Q值为几十至一百,最高也只有四五百。

电感Q值的高低的功用 
2、Q值过大,引起电感烧毁,电容击穿,电路振荡。

Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。

电感Q值的换算 
3、品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量。

通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。

Q=wL/R=1/wRC

其中:

Q是品质因素

w是电路谐振时的电源频率

L是电感

R是串的电阻

C是电容

Q值是品质因素,它是有用功与总功之比。


影响电感Q值的因素 
4、电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯。

Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。
元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。






Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。

品质因数描述了回路的储能与它一周耗能之比。

因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的Q值越大,谐振的通频带就越窄,也就是包含的频率范围更窄,如果需要宽一点的通频带,Q值越小越好。

在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越大越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗最大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。

关于磁损与影响磁环电感Q值关系现在电源设计要求越来越严格,这就要我们对每个问题点必须认真分析计算,针对磁损的计算一般只是简单的根据磁芯的体积和相关的损耗曲线进行简单计算但实际工作之中出现,同一种磁芯不同的绕制方式,与相同磁芯相同的绕制方式线的松紧程度不同,却带来不同的温升差距等。
 
 
来源:网络 查看全部
什么是电感Q值
1、
电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

根据使用场合的不同,对品质因数Q的要求也不同。对调谐回路中的电感线圈,Q值要求较高,因为Q值越高,回路的损耗就越小,回路的效率就越高;对鹅合线圈来说,Q值可以低一些;而对于低频或高频扼流圈,则可以不做要求。

实际上,Q值的提高往往受到一些因素的限制,如导线的直流电阻、线圈骨架的介质损耗、铁心和屏蔽引起的损耗以及高频工作时的集肤效应等。因此,线圈的Q值不可能做得很高,通常Q值为几十至一百,最高也只有四五百。

电感Q值的高低的功用 
2、Q值过大,引起电感烧毁,电容击穿,电路振荡。

Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。

电感Q值的换算 
3、品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量。

通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。

Q=wL/R=1/wRC

其中:

Q是品质因素

w是电路谐振时的电源频率

L是电感

R是串的电阻

C是电容

Q值是品质因素,它是有用功与总功之比。


影响电感Q值的因素 
4、电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯。

Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。
元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。

640.webp_(18)_.jpg


Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。

品质因数描述了回路的储能与它一周耗能之比。

因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的Q值越大,谐振的通频带就越窄,也就是包含的频率范围更窄,如果需要宽一点的通频带,Q值越小越好。

在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越大越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗最大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。

关于磁损与影响磁环电感Q值关系现在电源设计要求越来越严格,这就要我们对每个问题点必须认真分析计算,针对磁损的计算一般只是简单的根据磁芯的体积和相关的损耗曲线进行简单计算但实际工作之中出现,同一种磁芯不同的绕制方式,与相同磁芯相同的绕制方式线的松紧程度不同,却带来不同的温升差距等。
 
 
来源:网络
276 浏览

提高电感线圈Q值得七个绝招

智能制造类 乌龟大师 2017-01-10 16:47 发表了文章 来自相关话题

品质因数Q是反映线圈质量的重要参数,提高线圈的Q值,可以说是绕制线圈要注意的重点之一。那么,如何提高绕制线圈的Q值呢,下面介绍具体的方法:

(1)根据工作频率,选用线圈的导线

工作于低频段的电感线圈,一般采用漆包线等带绝缘的导线绕制。工作频率高于几万赫,而低于2MHz的电路中,采用多股绝缘的导线绕制线圈,这样,可有效地增加导体的表面积,从而可以克服集肤效应的影响,使Q值比相同截面积的单根导线绕制的线圈高30%-50%。在频率高于2MHz的电路中,电感线圈应采用单根粗导线绕制,导线的直径一般为0.3mm-1.5mm。采用间绕的电感线圈,常用镀银铜线绕制,以增加导线表面的导电性。这时不宜选用多股导线绕制,因为多股绝缘线在频率很高时,线圈绝缘介质将引起额外的损耗,其效果反不如单根导线好。

(2)选用优质的线圈骨架,减少介质损耗

在频率较高的场合,如短波波段,因为普通的线圈骨架,其介质损耗显著增加,因此,应选用高频介质材料,如高频瓷、聚四氟乙烯、聚苯乙烯等作为骨架,并采用间绕法绕制。

(3)选择合理的线圈尺寸,可以减少损耗外径一定的单层线圈(φ20mm-30mm),当绕组长度 L与外径 D的比值 L/D=0.7时,其损耗最小;外径一定的多层线圈L/ D=0.2-0.5,用t/D=0.25-0.1时,其损耗最小。绕组厚度t、绕组长度L和外径D之间满足3t+2L=D的情况下,损耗也最小。采用屏蔽罩的线圈,其L/D=0.8-1.2时最佳。

(4)选定合理屏蔽罩的直径

用屏蔽罩,会增加线圈的损耗,使Q值降低,因此屏蔽罩的尺寸不宜过小。然而屏蔽罩的尺寸过大,会增大体积,因而要选定合理屏蔽罩的直径尺寸。

当屏蔽罩直径Ds与线圈直径 D之比满足如下数值即 Ds/D=1.6-2.5时,Q值降低不大于10%。

(5)采用磁芯可使线圈圈数显著减少

线圈中采用磁芯,减少了线圈的圈数,不仅减小线圈的电阻值,有利Q值的提高,而且缩小了线圈的体积。

(6)线圈直径适当选大些,利于减小损耗在可能的条件下,线圈直径选得大一些,体积增大了一些,有利于减小线圈的损耗。一般接收机,单层线圈直径取12mm-30mm;多层线圈取6mm-13mm,但从体积考虑,也不宜超过20mm-25mm的范围。

(7)减小绕制线圈的分布电容

尽量采用无骨架方式绕制线圈,或者绕制在凸筋式骨架上的线圈,能减小分布电容15%-20%;分段绕法能减小多层线圈的分布电容的1/3~l/2。对于多层线圈来说,直径D越小,绕组长度L越小或绕组厚度t越大,则分布电容越小。应当指出的是:经过漫渍和封涂后的线圈,其分布电容将增大20%-30%。

总之,绕制线圈,始终把提高Q值,降低损耗,作为考虑的重点。
 
来源:网络 查看全部
品质因数Q是反映线圈质量的重要参数,提高线圈的Q值,可以说是绕制线圈要注意的重点之一。那么,如何提高绕制线圈的Q值呢,下面介绍具体的方法:

(1)根据工作频率,选用线圈的导线

工作于低频段的电感线圈,一般采用漆包线等带绝缘的导线绕制。工作频率高于几万赫,而低于2MHz的电路中,采用多股绝缘的导线绕制线圈,这样,可有效地增加导体的表面积,从而可以克服集肤效应的影响,使Q值比相同截面积的单根导线绕制的线圈高30%-50%。在频率高于2MHz的电路中,电感线圈应采用单根粗导线绕制,导线的直径一般为0.3mm-1.5mm。采用间绕的电感线圈,常用镀银铜线绕制,以增加导线表面的导电性。这时不宜选用多股导线绕制,因为多股绝缘线在频率很高时,线圈绝缘介质将引起额外的损耗,其效果反不如单根导线好。

(2)选用优质的线圈骨架,减少介质损耗

在频率较高的场合,如短波波段,因为普通的线圈骨架,其介质损耗显著增加,因此,应选用高频介质材料,如高频瓷、聚四氟乙烯、聚苯乙烯等作为骨架,并采用间绕法绕制。

(3)选择合理的线圈尺寸,可以减少损耗外径一定的单层线圈(φ20mm-30mm),当绕组长度 L与外径 D的比值 L/D=0.7时,其损耗最小;外径一定的多层线圈L/ D=0.2-0.5,用t/D=0.25-0.1时,其损耗最小。绕组厚度t、绕组长度L和外径D之间满足3t+2L=D的情况下,损耗也最小。采用屏蔽罩的线圈,其L/D=0.8-1.2时最佳。

(4)选定合理屏蔽罩的直径

用屏蔽罩,会增加线圈的损耗,使Q值降低,因此屏蔽罩的尺寸不宜过小。然而屏蔽罩的尺寸过大,会增大体积,因而要选定合理屏蔽罩的直径尺寸。

当屏蔽罩直径Ds与线圈直径 D之比满足如下数值即 Ds/D=1.6-2.5时,Q值降低不大于10%。

(5)采用磁芯可使线圈圈数显著减少

线圈中采用磁芯,减少了线圈的圈数,不仅减小线圈的电阻值,有利Q值的提高,而且缩小了线圈的体积。

(6)线圈直径适当选大些,利于减小损耗在可能的条件下,线圈直径选得大一些,体积增大了一些,有利于减小线圈的损耗。一般接收机,单层线圈直径取12mm-30mm;多层线圈取6mm-13mm,但从体积考虑,也不宜超过20mm-25mm的范围。

(7)减小绕制线圈的分布电容

尽量采用无骨架方式绕制线圈,或者绕制在凸筋式骨架上的线圈,能减小分布电容15%-20%;分段绕法能减小多层线圈的分布电容的1/3~l/2。对于多层线圈来说,直径D越小,绕组长度L越小或绕组厚度t越大,则分布电容越小。应当指出的是:经过漫渍和封涂后的线圈,其分布电容将增大20%-30%。

总之,绕制线圈,始终把提高Q值,降低损耗,作为考虑的重点。
 
来源:网络
704 浏览

电感--和电流对着干的小精灵

电气控制类 品管人生 2016-10-25 16:20 发表了文章 来自相关话题

和电流对着干?什么意思?呵呵,这是电感元件的一个牛脾气,正是这个牛脾气,在很多地方就不能离开它!

还是先从认识电感开始把!电感实际上构造很简单,拿一根漆包线绕成一个线圈就是一个电感!用磁块做成架把漆包线绕上去就是磁珠电杆,mpn里面常见的都是这个的样子:






在电路图中电感一般用L表示,就像电阻用R、电容用C表示一样,你可以看看电路图中有哪个元件旁边标有L的并且用符号:





 
来表示的就是电感了,在这里需要注意的是,要与这样的






符号区别开,这个符号是电阻的一种表示,千万不要看成是电感了!电感是不分正负极的,在电路中不用分哪边接正电哪边接负电(在某些地方是要分相位的,即电感的线圈绕向,mpn中不用考虑)!电感的大小是用“亨利”来作单位的,简称亨(H),比它小的单位还有毫亨(mH)和微亨(uH),它们之间是以千换算的!

电感到底有什么牛脾气呢?为什么说它给电流对着干呢?原来啊电感在电路当电流要通过它的一瞬间,它就会自己产生一个电压,这个电压的电流方向刚好和要通过去的电流的方向相反——顶牛了!不过这只是一瞬间的事情,随后就没有了这种抵抗了!当在电路中通过电感的电流要断开了的时候,电感又产生一个电压,产生的电流刚好和要断开的电流方向相反——它又不让电流断开!又顶上牛了,呵呵,说它和电流对着干没有委屈它吧?正是电感的这种牛脾气让我们就可以利用它发挥一定的作用,你想一想我们上一讲讲到在电路中有一种方向不断变化着的交流电,这个交流不断变化着的东西有时候我们不需要它,有时候我们又需要它,聪明的人类就自然而然的想到了利用电感的这个牛脾气了,交流电流方向不断改变,电感就不断地抵抗,其结果是方向不断变化的交流电就不能通过电感,直流电由于电流方向不会变化,所以就可以顺利通过电感,电感的大小对交流变化快速度慢的电流阻碍作用也不尽相同:同一个电感对变化快的电流阻挡大对变化慢的交流电阻挡小;对同一个变化速度的交流电来说感值大的阻碍大,感值小的就阻碍小!呵呵,我们通过利用电感的这个性格,轻而易举的就把电路中的交流电和直流电分开了!讲到这里可能大家又想起了电容,电容的特性是“隔直流,同交流”,那么电感的特性就是刚好和电容相反:隔交流,通直流,电路中正是由于电感和电容的有机配合,才让电路中的交流和直流电很容易的分别开来!当然电感的这个特性还有一些其它的作用,这些需要你升级学习,慢慢领会了!

升级理论:要学习透彻电感理论,要认真学习弄通“楞次定律”!

什么是电感器? 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。

一、自感与互感

(一)自感

当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。

(二)互感

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。

二、电感器的作用

电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路;升压,降压也往往离不开它!

现在分析几个电感电路,具体分析一下它们各自在电路中所起的作用:






图一是一个mp3中的vcc和avcc电源滤波电路,vcc和avcc的电压都是3v,vcc是给主控供电的,要求电压稳定并且是纯净的直流电成分,不允许有交流电成分!avcc是给音频放大电路提供能源的,要求有足够的直流电能量提供!可能要问,两个电压即使都是3v为什么还要接上一个电感L1呢?音频放大电路在放大声音的时候,随着高音低音,音大音小的变化,所需要的电流也会大小变化剧烈,电感电容虽说脾气相反但有一个共同的地方就是电感和电容两端的电压不能突变,所以电感L1和两边的电容有一个稳定vcc和avcc电压的作用,也就是声音放大造成电压波动不至于影响供给主控工作的vcc电压的波动;除了这个作用,由L1和两边的电容还有第二个作用,那就是滤波作用,由于声音放大电路里很容易参杂进去交流成分,这个交流成分是决不能进入到vcc电压进入主控的,L1就是为了阻止交流成分进入的主要元件,受到阻挡的交流电成分不能通过L1,就只好乖乖的通过C5和CE5进入地而消失了!C5和CE5+L1+C4和CE4组成的电路又叫“π型”滤波器!






图二是mp3电路中的屏背灯升压电路,mp3中的屏背景灯一般是由2-3个LED灯管头尾相接串接起来的,一个LED灯管需要3v的直流电压才能够点亮,2个串起来就需要6v电压,3个串起来就要9v电压才能够全部点亮!我们知道mp3里的锂电池最高电压也就是4.2v,正常工作电压只有3.7v,这个电压根本没有办法点亮2个以上串接起来的LED灯管,于是就必须把3.7v的电压升高到6v或者9v来点亮LED灯管!上面这个电路就是这样的升压电路。电路中U7是一个升压集成块,它与L7、C28等组成一个震荡的升高的交流电电压,然后再由D2这个元件(叫二极管,下一讲我们就将讲它的作用)把升高的交流电再变成直流电去点亮LED灯管!所以这里的L7电感是升压谐振电感!图三图三是mp3耳机电路有L4、L5、L6三个磁珠电感,其中L4、L5是为了阻挡混在声音中的变化速度快得人耳不能听到的交流成分(叫超声波),让它通过电容C31、C32入地,不再进入耳机让我们感到声音不纯净和疲劳!我们知道,mp3收音机天线是用耳机线做天线的,L6这个磁珠电感的作用就是阻挡耳机线送过来的无线电波信号不能让它进入地只能进入调频收音块的天线接收脚!






图三中U7的6脚是电源输入脚,5脚是退藕,4脚是控制U7的工作状态,高电位(有电压)的时候工作屏背景灯亮,低电位0v的时候停止工作,屏背景灯熄灭,省电状态;3脚是输出补偿,2脚接地,1脚接电感震荡输出。当电感值一定的时候,震荡的速度越快,电流方向变化的速度也越快,输出电压就越高!图三中的 R22是补偿电阻E3、E4、E5是静电高压泻放电阻,也可以不接!
 
 
 
 
来源:工控维修那些事儿
智造家提供 查看全部
和电流对着干?什么意思?呵呵,这是电感元件的一个牛脾气,正是这个牛脾气,在很多地方就不能离开它!

还是先从认识电感开始把!电感实际上构造很简单,拿一根漆包线绕成一个线圈就是一个电感!用磁块做成架把漆包线绕上去就是磁珠电杆,mpn里面常见的都是这个的样子:

6.1_.JPG


在电路图中电感一般用L表示,就像电阻用R、电容用C表示一样,你可以看看电路图中有哪个元件旁边标有L的并且用符号:

6.2_.JPG

 
来表示的就是电感了,在这里需要注意的是,要与这样的

6.3_.JPG


符号区别开,这个符号是电阻的一种表示,千万不要看成是电感了!电感是不分正负极的,在电路中不用分哪边接正电哪边接负电(在某些地方是要分相位的,即电感的线圈绕向,mpn中不用考虑)!电感的大小是用“亨利”来作单位的,简称亨(H),比它小的单位还有毫亨(mH)和微亨(uH),它们之间是以千换算的!

电感到底有什么牛脾气呢?为什么说它给电流对着干呢?原来啊电感在电路当电流要通过它的一瞬间,它就会自己产生一个电压,这个电压的电流方向刚好和要通过去的电流的方向相反——顶牛了!不过这只是一瞬间的事情,随后就没有了这种抵抗了!当在电路中通过电感的电流要断开了的时候,电感又产生一个电压,产生的电流刚好和要断开的电流方向相反——它又不让电流断开!又顶上牛了,呵呵,说它和电流对着干没有委屈它吧?正是电感的这种牛脾气让我们就可以利用它发挥一定的作用,你想一想我们上一讲讲到在电路中有一种方向不断变化着的交流电,这个交流不断变化着的东西有时候我们不需要它,有时候我们又需要它,聪明的人类就自然而然的想到了利用电感的这个牛脾气了,交流电流方向不断改变,电感就不断地抵抗,其结果是方向不断变化的交流电就不能通过电感,直流电由于电流方向不会变化,所以就可以顺利通过电感,电感的大小对交流变化快速度慢的电流阻碍作用也不尽相同:同一个电感对变化快的电流阻挡大对变化慢的交流电阻挡小;对同一个变化速度的交流电来说感值大的阻碍大,感值小的就阻碍小!呵呵,我们通过利用电感的这个性格,轻而易举的就把电路中的交流电和直流电分开了!讲到这里可能大家又想起了电容,电容的特性是“隔直流,同交流”,那么电感的特性就是刚好和电容相反:隔交流,通直流,电路中正是由于电感和电容的有机配合,才让电路中的交流和直流电很容易的分别开来!当然电感的这个特性还有一些其它的作用,这些需要你升级学习,慢慢领会了!

升级理论:要学习透彻电感理论,要认真学习弄通“楞次定律”!

什么是电感器? 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。

一、自感与互感

(一)自感

当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。

(二)互感

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。

二、电感器的作用

电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路;升压,降压也往往离不开它!

现在分析几个电感电路,具体分析一下它们各自在电路中所起的作用:

6.4_.JPG


图一是一个mp3中的vcc和avcc电源滤波电路,vcc和avcc的电压都是3v,vcc是给主控供电的,要求电压稳定并且是纯净的直流电成分,不允许有交流电成分!avcc是给音频放大电路提供能源的,要求有足够的直流电能量提供!可能要问,两个电压即使都是3v为什么还要接上一个电感L1呢?音频放大电路在放大声音的时候,随着高音低音,音大音小的变化,所需要的电流也会大小变化剧烈,电感电容虽说脾气相反但有一个共同的地方就是电感和电容两端的电压不能突变,所以电感L1和两边的电容有一个稳定vcc和avcc电压的作用,也就是声音放大造成电压波动不至于影响供给主控工作的vcc电压的波动;除了这个作用,由L1和两边的电容还有第二个作用,那就是滤波作用,由于声音放大电路里很容易参杂进去交流成分,这个交流成分是决不能进入到vcc电压进入主控的,L1就是为了阻止交流成分进入的主要元件,受到阻挡的交流电成分不能通过L1,就只好乖乖的通过C5和CE5进入地而消失了!C5和CE5+L1+C4和CE4组成的电路又叫“π型”滤波器!

6.5_.JPG


图二是mp3电路中的屏背灯升压电路,mp3中的屏背景灯一般是由2-3个LED灯管头尾相接串接起来的,一个LED灯管需要3v的直流电压才能够点亮,2个串起来就需要6v电压,3个串起来就要9v电压才能够全部点亮!我们知道mp3里的锂电池最高电压也就是4.2v,正常工作电压只有3.7v,这个电压根本没有办法点亮2个以上串接起来的LED灯管,于是就必须把3.7v的电压升高到6v或者9v来点亮LED灯管!上面这个电路就是这样的升压电路。电路中U7是一个升压集成块,它与L7、C28等组成一个震荡的升高的交流电电压,然后再由D2这个元件(叫二极管,下一讲我们就将讲它的作用)把升高的交流电再变成直流电去点亮LED灯管!所以这里的L7电感是升压谐振电感!图三图三是mp3耳机电路有L4、L5、L6三个磁珠电感,其中L4、L5是为了阻挡混在声音中的变化速度快得人耳不能听到的交流成分(叫超声波),让它通过电容C31、C32入地,不再进入耳机让我们感到声音不纯净和疲劳!我们知道,mp3收音机天线是用耳机线做天线的,L6这个磁珠电感的作用就是阻挡耳机线送过来的无线电波信号不能让它进入地只能进入调频收音块的天线接收脚!

6.6_.JPG


图三中U7的6脚是电源输入脚,5脚是退藕,4脚是控制U7的工作状态,高电位(有电压)的时候工作屏背景灯亮,低电位0v的时候停止工作,屏背景灯熄灭,省电状态;3脚是输出补偿,2脚接地,1脚接电感震荡输出。当电感值一定的时候,震荡的速度越快,电流方向变化的速度也越快,输出电压就越高!图三中的 R22是补偿电阻E3、E4、E5是静电高压泻放电阻,也可以不接!
 
 
 
 
来源:工控维修那些事儿
智造家提供
469 浏览

电感的重要参数之Q值

设备硬件类 善思惟 2016-10-20 14:46 发表了文章 来自相关话题

什么是电感Q值
1、
电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

根据使用场合的不同,对品质因数Q的要求也不同。对调谐回路中的电感线圈,Q值要求较高,因为Q值越高,回路的损耗就越小,回路的效率就越高;对鹅合线圈来说,Q值可以低一些;而对于低频或高频扼流圈,则可以不做要求。

实际上,Q值的提高往往受到一些因素的限制,如导线的直流电阻、线圈骨架的介质损耗、铁心和屏蔽引起的损耗以及高频工作时的集肤效应等。因此,线圈的Q值不可能做得很高,通常Q值为几十至一百,最高也只有四五百。

电感Q值的高低的功用 
2、Q值过大,引起电感烧毁,电容击穿,电路振荡。

Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。

电感Q值的换算 
3、品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量。

通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。

Q=wL/R=1/wRC

其中:

Q是品质因素

w是电路谐振时的电源频率

L是电感

R是串的电阻

C是电容

Q值是品质因素,它是有用功与总功之比。


影响电感Q值的因素 
4、电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯。

Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。
元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。






Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。

品质因数描述了回路的储能与它一周耗能之比。

因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的Q值越大,谐振的通频带就越窄,也就是包含的频率范围更窄,如果需要宽一点的通频带,Q值越小越好。

在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越大越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗最大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。

关于磁损与影响磁环电感Q值关系现在电源设计要求越来越严格,这就要我们对每个问题点必须认真分析计算,针对磁损的计算一般只是简单的根据磁芯的体积和相关的损耗曲线进行简单计算但实际工作之中出现,同一种磁芯不同的绕制方式,与相同磁芯相同的绕制方式线的松紧程度不同,却带来不同的温升差距等。
 
 
来源:网络 查看全部
什么是电感Q值
1、
电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

根据使用场合的不同,对品质因数Q的要求也不同。对调谐回路中的电感线圈,Q值要求较高,因为Q值越高,回路的损耗就越小,回路的效率就越高;对鹅合线圈来说,Q值可以低一些;而对于低频或高频扼流圈,则可以不做要求。

实际上,Q值的提高往往受到一些因素的限制,如导线的直流电阻、线圈骨架的介质损耗、铁心和屏蔽引起的损耗以及高频工作时的集肤效应等。因此,线圈的Q值不可能做得很高,通常Q值为几十至一百,最高也只有四五百。

电感Q值的高低的功用 
2、Q值过大,引起电感烧毁,电容击穿,电路振荡。

Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。

电感Q值的换算 
3、品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量。

通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。

Q=wL/R=1/wRC

其中:

Q是品质因素

w是电路谐振时的电源频率

L是电感

R是串的电阻

C是电容

Q值是品质因素,它是有用功与总功之比。


影响电感Q值的因素 
4、电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯。

Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。
元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。

640.webp_(18)_.jpg


Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。

品质因数描述了回路的储能与它一周耗能之比。

因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的Q值越大,谐振的通频带就越窄,也就是包含的频率范围更窄,如果需要宽一点的通频带,Q值越小越好。

在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越大越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗最大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。

关于磁损与影响磁环电感Q值关系现在电源设计要求越来越严格,这就要我们对每个问题点必须认真分析计算,针对磁损的计算一般只是简单的根据磁芯的体积和相关的损耗曲线进行简单计算但实际工作之中出现,同一种磁芯不同的绕制方式,与相同磁芯相同的绕制方式线的松紧程度不同,却带来不同的温升差距等。
 
 
来源:网络