本月累计签到次数:

今天获取 积分

工业控制

工业控制

325 浏览

探秘一汽大众智能工厂 一分钟两台发动机下线

设备硬件类 凯麦亿精密机械 2016-12-14 11:29 发表了文章 来自相关话题

发动机是汽车的动力源


1769年,法国人N.J.居纽(Cugnot)

制造了世界上第一辆蒸汽驱动三轮汽车


1879年,卡尔.苯茨(KartBenz)

首次试验成功一台二冲程试验性发动机


汽车发动机一百多年的历史了

但你知道现在汽车发动机如何制造出来吗


生产EA211发动机

年产90万台

众多技术加持






















































































































































 
 
 
 
来源: 工控帮
智造家 查看全部
发动机是汽车的动力源


1769年,法国人N.J.居纽(Cugnot)

制造了世界上第一辆蒸汽驱动三轮汽车


1879年,卡尔.苯茨(KartBenz)

首次试验成功一台二冲程试验性发动机


汽车发动机一百多年的历史了

但你知道现在汽车发动机如何制造出来吗


生产EA211发动机

年产90万台

众多技术加持

4.1_.jpg


4.2_.jpg


4.3_.jpg


4.4_.jpg


4.5_.jpg


4.6_.jpg


4.7_.jpg


4.8_.jpg


4.9_.jpg


4.10_.jpg


4.11_.jpg


4.12_.jpg


4.13_.jpg


4.14_.jpg


4.15_.jpg


4.16_.jpg


4.17_.jpg


4.18_.jpg


4.19_.jpg


4.20_.jpg


4.21_.jpg


4.22_.jpg


4.23_.jpg


4.24_.jpg


4.25_.jpg


4.26_.jpg


4.27_.jpg


4.28_.jpg


4.29_.jpg


4.30_.jpg

 
 
 
 
来源: 工控帮
智造家
520 浏览

伺服电机使用中的这些问题,不容忽视

电气控制类 凯麦亿精密机械 2016-12-14 11:19 发表了文章 来自相关话题

伺服系统是机电产品中的重要环节,它能提供最高水平的动态响应和扭矩密度,所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。为了实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。


本文将浅析伺服电机在使用中的常见问题。



问题一噪声,不稳定


客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。


交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值进行比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。


举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。整个系统需要获得恒定的速度和较快的响应特性,分析其动作过程。


当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到像电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的不断增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。


在此例中,系统是振荡的,电机扭矩是波动的,负载速度也随之波动。其结果当然会是噪音、磨损、不稳定了。不过,这都不是由伺服电机引起的,这种噪声和不稳定性,是来源于机械传动装置,是由于伺服系统反应速度(高)与机械传递或者反应时间(较长)不相匹配而引起的,即伺服电机响应快于系统调整新的扭矩所需的时间。



找到了问题根源所在,再来解决当然就容易多了,针对以上例子,您可以:


(1)增加机械刚性和降低系统的惯性,减少机械传动部位的响应时间,如把V形带更换成直接丝杆传动或用齿轮箱代替V型带;

(2)降低伺服系统的响应速度,减少伺服系统的控制带宽,如降低伺服系统的增益参数值。


当然,以上只是噪声、不稳定的原因之一,针对不同的原因,会有不同的解决办法,如由机械共振引起的噪声,在伺服方面可采取共振抑制,低通滤波等方法,总之,噪声和不稳定的原因,基本上都不会是由于伺服电机本身所造成。



问题二惯性匹配


在伺服系统选型及调试中,常会碰到惯量问题!


具体表现为:


1、在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;

2、在调试时(手动模式下),正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前题,此点在要求高速高精度的系统上表现由为突出(台达伺服惯量比参数为1-37,JL/JM)。这样,就有了惯量匹配的问题!



那到底什么是“惯量匹配”呢?


1、根据牛顿第二定律:“进给系统所需力矩T=系统传动惯量J×角加速度θ

角加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。


2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM+电机轴换算的负载惯性动量JL

负载惯量JL由(以工具机为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。


知道了什么是惯量匹配,那惯量匹配具体有什么影响又如何确定呢?


影响:

传动惯量对伺服系统的精度,稳定性,动态响应都有影响,惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。


确定:


衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。例如,CNC中心机通过伺服电机作高速切削时,当负载惯量增加时,会发生:

(1)控制指令改变时,马达需花费较多时间才能达到新指令的速度要求;

(2)当机台沿二轴执行弧式曲线快速切削时,会发生较大误差:

①一般伺服电机通常状况下,当JL≦JM,则上面的问题不会发生

②当JL=3×JM,则马达的可控性会些微降低,但对平常的金属切削不会有影响。(高速曲线切削一般建议JL≦JM)

③当JL≧3×JM,马达的可控性会明显下降,在高速曲线切削时表现突出


不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。



问题三伺服电机选型


在选择好机械传动方案以后,就必须对伺服电机的型号和大小进行选择和确认。


(1)选型条件  —  一般情况下,选择伺服电机需满足下列情况:

  ●    马达最大转速>系统所需之最高移动转速;

  ●    马达的转子惯量与负载惯量相匹配;

  ●    连续负载工作扭力≦马达额定扭力;

  ●    马达最大输出扭力>系统所需最大扭力(加速时扭力)。



(2)选型计算:

  ●    惯量匹配计算(JL/JM)

  ●    回转速度计算(负载端转速,马达端转速)

  ●    负载扭矩计算(连续负载工作扭矩,加速时扭矩)
 
 
 
 
来源:网络
智造家 查看全部
伺服系统是机电产品中的重要环节,它能提供最高水平的动态响应和扭矩密度,所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。为了实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。


本文将浅析伺服电机在使用中的常见问题。



问题一噪声,不稳定


客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。


交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值进行比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。


举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。整个系统需要获得恒定的速度和较快的响应特性,分析其动作过程。


当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到像电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的不断增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。


在此例中,系统是振荡的,电机扭矩是波动的,负载速度也随之波动。其结果当然会是噪音、磨损、不稳定了。不过,这都不是由伺服电机引起的,这种噪声和不稳定性,是来源于机械传动装置,是由于伺服系统反应速度(高)与机械传递或者反应时间(较长)不相匹配而引起的,即伺服电机响应快于系统调整新的扭矩所需的时间。



找到了问题根源所在,再来解决当然就容易多了,针对以上例子,您可以:


(1)增加机械刚性和降低系统的惯性,减少机械传动部位的响应时间,如把V形带更换成直接丝杆传动或用齿轮箱代替V型带;

(2)降低伺服系统的响应速度,减少伺服系统的控制带宽,如降低伺服系统的增益参数值。


当然,以上只是噪声、不稳定的原因之一,针对不同的原因,会有不同的解决办法,如由机械共振引起的噪声,在伺服方面可采取共振抑制,低通滤波等方法,总之,噪声和不稳定的原因,基本上都不会是由于伺服电机本身所造成。



问题二惯性匹配


在伺服系统选型及调试中,常会碰到惯量问题!


具体表现为:


1、在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;

2、在调试时(手动模式下),正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前题,此点在要求高速高精度的系统上表现由为突出(台达伺服惯量比参数为1-37,JL/JM)。这样,就有了惯量匹配的问题!



那到底什么是“惯量匹配”呢?


1、根据牛顿第二定律:“进给系统所需力矩T=系统传动惯量J×角加速度θ

角加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。


2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM+电机轴换算的负载惯性动量JL

负载惯量JL由(以工具机为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。


知道了什么是惯量匹配,那惯量匹配具体有什么影响又如何确定呢?


影响:

传动惯量对伺服系统的精度,稳定性,动态响应都有影响,惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。


确定:


衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。例如,CNC中心机通过伺服电机作高速切削时,当负载惯量增加时,会发生:

(1)控制指令改变时,马达需花费较多时间才能达到新指令的速度要求;

(2)当机台沿二轴执行弧式曲线快速切削时,会发生较大误差:

①一般伺服电机通常状况下,当JL≦JM,则上面的问题不会发生

②当JL=3×JM,则马达的可控性会些微降低,但对平常的金属切削不会有影响。(高速曲线切削一般建议JL≦JM)

③当JL≧3×JM,马达的可控性会明显下降,在高速曲线切削时表现突出


不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。



问题三伺服电机选型


在选择好机械传动方案以后,就必须对伺服电机的型号和大小进行选择和确认。


(1)选型条件  —  一般情况下,选择伺服电机需满足下列情况:

  ●    马达最大转速>系统所需之最高移动转速;

  ●    马达的转子惯量与负载惯量相匹配;

  ●    连续负载工作扭力≦马达额定扭力;

  ●    马达最大输出扭力>系统所需最大扭力(加速时扭力)。



(2)选型计算:

  ●    惯量匹配计算(JL/JM)

  ●    回转速度计算(负载端转速,马达端转速)

  ●    负载扭矩计算(连续负载工作扭矩,加速时扭矩)
 
 
 
 
来源:网络
智造家
517 浏览

电力人面试常见的24个问题

智能制造类 喷漆李 2016-12-13 11:13 发表了文章 来自相关话题

一、什么是动力系统、电力系统、电力网?


通常把发电企业的动力设施、设备和发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能热能生产、输送、分配、使用的统一整体称为动力系统;

把由发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统;

把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。




二、现代电网有哪些特点?


1、由较强的超高压系统构成主网架。

2、各电网之间联系较强,电压等级相对简化。

3、具有足够的调峰、调频、调压容量,能够实现自动发电控制,有较高的供电可靠性。

4、具有相应的安全稳定控制系统,高度自动化的监控系统和高度现代化的通信系统。

5、具有适应电力市场运营的技术支持系统,有利于合理利用能源。




三、区域电网互联的意义与作用是什么?


1、可以合理利用能源,加强环境保护,有利于电力工业的可持续发展。

2、可安装大容量、高效能火电机组、水电机组和核电机组,有利于降低造价,节约能源,加快电力建设速度。

3、可以利用时差、温差,错开用电高峰,利用各地区用电的非同时性进行负荷调整,减少备用容量和装机容量。

4、可以在各地区之间互供电力、互通有无、互为备用,可减少事故备用容量,增强抵御事故能力,提高电网安全水平和供电可靠性。

5、能承受较大的冲击负荷,有利于改善电能质量。

6、可以跨流域调节水电,并在更大范围内进行水火电经济调度,取得更大的经济效益。




四、电网无功补偿的原则是什么?


电网无功补偿的原则是电网无功补偿应基本上按分层分区和就地平衡原则考虑,并应能随负荷或电压进行调整,保证系统各枢纽点的电压在正常和事故后均能满足规定的要求,避免经长距离线路或多级变压器传送无功功率。




五、简述电力系统电压特性与频率特性的区别是什么?


电力系统的频率特性取决于负荷的频率特性和发电机的频率特性(负荷随频率的变化而变化的特性叫负荷的频率特性。发电机组的出力随频率的变化而变化的特性叫发电机的频率特性),它是由系统的有功负荷平衡决定的,且与网络结构(网络阻抗)关系不大。在非振荡情况下,同一电力系统的稳态频率是相同的。因此,系统频率可以集中调整控制。

电力系统的电压特性与电力系统的频率特性则不相同。电力系统各节点的电压通常情况下是不完全相同的,主要取决于各区的有功和无功供需平衡情况,也与网络结构(网络阻抗)有较大关系。因此,电压不能全网集中统一调整,只能分区调整控制。




六、什么是系统电压监测点、中枢点?有何区别?电压中枢点一般如何选择?


监测电力系统电压值和考核电压质量的节点,称为电压监测点。电力系统中重要的电压支撑节点称为电压中枢点。因此,电压中枢点一定是电压监测点,而电压监测点却不一定是电压中枢点。


电压中枢点的选择原则是:

1)区域性水、火电厂的高压母线(高压母线有多回出线);

2)分区选择母线短路容量较大的220kV变电站母线;

3)有大量地方负荷的发电厂母线。




七、试述电力系统谐波对电网产生的影响?


谐波对电网的影响主要有:

谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。

谐波对线路的主要危害是引起附加损耗。

谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及安全自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。

限制电网谐波的主要措施有:

增加换流装置的脉动数;

加装交流滤波器、有源电力滤波器;加强谐波管理。




八、何谓潜供电流?它对重合闸有何影响?如何防止?


当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。

由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。

为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的措施:

如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。




九、什么叫电力系统理论线损和管理线损?


理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。




十、什么叫自然功率?


运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有功功率的数值叫做线路的"自然功率"或"波阻抗功率"。




十一、电力系统中性点接地方式有几种?什么叫大电流、小电流接地系统?其划分标准如何?


我国电力系统中性点接地方式主要有两种,即:

1、中性点直接接地方式(包括中性点经小电阻接地方式)。2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。

中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。

中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。

在我国划分标准为:X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统属于小接地电流系统

注:X0为系统零序电抗,X1为系统正序电抗。




十二、电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有什么特点?


电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。因这种系统中发生单相接地故障时,不直接构成短路回路,接地相电流不大,不必立即切除接地相,但这时非接地相的对地电压却升高为相电压的1。7倍。




十三、小电流接地系统中,为什么采用中性点经消弧线圈接地?


小电流接地系统中发生单相接地故障时,接地点将通过接地故障线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,使非故障相对地电压有较大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

为此,我国采取的措施是:当小电流接地系统电网发生单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为10A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障点电流减少,提高自动熄弧能力并能自动熄弧,保证继续供电。




十四、什么情况下单相接地故障电流大于三相短路故障电流?


当故障点零序综合阻抗小于正序综合阻抗时,单相接地故障电流将大于三相短路故障电流。例如:在大量采用自耦变压器的系统中,由于接地中性点多,系统故障点零序综合阻抗往往小于正序综合阻抗,这时单相接地故障电流大于三相短路故障电流。




十五、什么是电力系统序参数?零序参数有何特点?


对称的三相电路中,流过不同相序的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间,仍符合欧姆定律。任一元件两端的相序电压与流过该元件的相应的相序电流之比,称为该元件的序参数(阻抗)

零序参数(阻抗)与网络结构,特别是和变压器的接线方式及中性点接地方式有关。一般情况下,零序参数(阻抗)及零序网络结构与正、负序网络不一样。




十六、零序参数与变压器接线组别、中性点接地方式、输电线架空地线、相邻平行线路有何关系?


对于变压器,零序电抗与其结构(三个单相变压器组还是三柱变压器)、绕组的连接(△或Y)和接地与否等有关。

当三相变压器的一侧接成三角形或中性点不接地的星形时,从这一侧来看,变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。

对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。

零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。

平行架设的两回三相架空输电线路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样。这就使这种线路的零序阻抗进一步增大。




十七、什么叫电力系统的稳定运行?电力系统稳定共分几类?


当电力系统受到扰动后,能自动地恢复到原来的运行状态,或者凭借控制设备的作用过渡到新的稳定状态运行,即谓电力系统稳定运行。


电力系统的稳定从广义角度来看,可分为:

1、发电机同步运行的稳定性问题(根据电力系统所承受的扰动大小的不同,又可分为静态稳定、暂态稳定、动态稳定三大类);

2、电力系统无功不足引起的电压稳定性问题;

3、电力系统有功功率不足引起的频率稳定性问题。




十八、采用单相重合闸为什么可以提高暂态稳定性?


采用单相重合闸后,由于故障时切除的是故障相而不是三相,在切除故障相后至重合闸前的一段时间里,送电端和受电端没有完全失去联系(电气距离与切除三相相比,要小得多),这样可以减少加速面积,增加减速面积,提高暂态稳定性。




十九、简述同步发电机的同步振荡和异步振荡?


同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。这一过程即同步振荡,亦即发电机仍保持在同步运行状态下的振荡。

异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周

期性地变化,发电机与电网失去同步运行的状态。在异步振荡时,发电机一会工作在发电机状态,一会工作在电动机状态。




二十、如何区分系统发生的振荡属异步振荡还是同步振荡?

异步振荡其明显特征是:系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表、功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。

同步振荡时,其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。




二十一、系统振荡事故与短路事故有什么不同?


电力系统振荡和短路的主要区别是:

1、振荡时系统各点电压和电流值均作往复性摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时电流、电压值突然变化量很大。

2、振动时系统任何一点电流与电压之间的相位角都随功角的变化而改变;而短路时,电流与电压之间的角度是基本不变的。

3、振荡时系统三相是对称的;而短路时系统可能出现三相不对称。




二十二、引起电力系统异步振荡的主要原因是什么?


1、输电线路输送功率超过极限值造成静态稳定破坏;

2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;

3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;

4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;

5、电源间非同步合闸未能拖入同步。




二十三、系统振荡时的一般现象是什么?


1、发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。

2、连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零值一次。随着离振荡中心距离的增加,电压波动逐渐减少。如果联络线的阻抗较大,两侧电厂的电容也很大,则线路两端的电压振荡是较小的。

3、失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。




二十四、什么叫低频振荡?


并列运行的发电机间在小干扰下发生的频率为0。2~2。5赫兹范围内的持续振荡现象叫低频振荡。
 
 
 
 
 
 
来源:工控帮
智造家 查看全部
一、什么是动力系统、电力系统、电力网?


通常把发电企业的动力设施、设备和发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能热能生产、输送、分配、使用的统一整体称为动力系统;

把由发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统;

把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。




二、现代电网有哪些特点?


1、由较强的超高压系统构成主网架。

2、各电网之间联系较强,电压等级相对简化。

3、具有足够的调峰、调频、调压容量,能够实现自动发电控制,有较高的供电可靠性。

4、具有相应的安全稳定控制系统,高度自动化的监控系统和高度现代化的通信系统。

5、具有适应电力市场运营的技术支持系统,有利于合理利用能源。




三、区域电网互联的意义与作用是什么?


1、可以合理利用能源,加强环境保护,有利于电力工业的可持续发展。

2、可安装大容量、高效能火电机组、水电机组和核电机组,有利于降低造价,节约能源,加快电力建设速度。

3、可以利用时差、温差,错开用电高峰,利用各地区用电的非同时性进行负荷调整,减少备用容量和装机容量。

4、可以在各地区之间互供电力、互通有无、互为备用,可减少事故备用容量,增强抵御事故能力,提高电网安全水平和供电可靠性。

5、能承受较大的冲击负荷,有利于改善电能质量。

6、可以跨流域调节水电,并在更大范围内进行水火电经济调度,取得更大的经济效益。




四、电网无功补偿的原则是什么?


电网无功补偿的原则是电网无功补偿应基本上按分层分区和就地平衡原则考虑,并应能随负荷或电压进行调整,保证系统各枢纽点的电压在正常和事故后均能满足规定的要求,避免经长距离线路或多级变压器传送无功功率。




五、简述电力系统电压特性与频率特性的区别是什么?


电力系统的频率特性取决于负荷的频率特性和发电机的频率特性(负荷随频率的变化而变化的特性叫负荷的频率特性。发电机组的出力随频率的变化而变化的特性叫发电机的频率特性),它是由系统的有功负荷平衡决定的,且与网络结构(网络阻抗)关系不大。在非振荡情况下,同一电力系统的稳态频率是相同的。因此,系统频率可以集中调整控制。

电力系统的电压特性与电力系统的频率特性则不相同。电力系统各节点的电压通常情况下是不完全相同的,主要取决于各区的有功和无功供需平衡情况,也与网络结构(网络阻抗)有较大关系。因此,电压不能全网集中统一调整,只能分区调整控制。




六、什么是系统电压监测点、中枢点?有何区别?电压中枢点一般如何选择?


监测电力系统电压值和考核电压质量的节点,称为电压监测点。电力系统中重要的电压支撑节点称为电压中枢点。因此,电压中枢点一定是电压监测点,而电压监测点却不一定是电压中枢点。


电压中枢点的选择原则是:

1)区域性水、火电厂的高压母线(高压母线有多回出线);

2)分区选择母线短路容量较大的220kV变电站母线;

3)有大量地方负荷的发电厂母线。




七、试述电力系统谐波对电网产生的影响?


谐波对电网的影响主要有:

谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。

谐波对线路的主要危害是引起附加损耗。

谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及安全自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。

限制电网谐波的主要措施有:

增加换流装置的脉动数;

加装交流滤波器、有源电力滤波器;加强谐波管理。




八、何谓潜供电流?它对重合闸有何影响?如何防止?


当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。

由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。

为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的措施:

如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。




九、什么叫电力系统理论线损和管理线损?


理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。




十、什么叫自然功率?


运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有功功率的数值叫做线路的"自然功率"或"波阻抗功率"。




十一、电力系统中性点接地方式有几种?什么叫大电流、小电流接地系统?其划分标准如何?


我国电力系统中性点接地方式主要有两种,即:

1、中性点直接接地方式(包括中性点经小电阻接地方式)。2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。

中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。

中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。

在我国划分标准为:X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统属于小接地电流系统

注:X0为系统零序电抗,X1为系统正序电抗。




十二、电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有什么特点?


电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。因这种系统中发生单相接地故障时,不直接构成短路回路,接地相电流不大,不必立即切除接地相,但这时非接地相的对地电压却升高为相电压的1。7倍。




十三、小电流接地系统中,为什么采用中性点经消弧线圈接地?


小电流接地系统中发生单相接地故障时,接地点将通过接地故障线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,使非故障相对地电压有较大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

为此,我国采取的措施是:当小电流接地系统电网发生单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为10A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障点电流减少,提高自动熄弧能力并能自动熄弧,保证继续供电。




十四、什么情况下单相接地故障电流大于三相短路故障电流?


当故障点零序综合阻抗小于正序综合阻抗时,单相接地故障电流将大于三相短路故障电流。例如:在大量采用自耦变压器的系统中,由于接地中性点多,系统故障点零序综合阻抗往往小于正序综合阻抗,这时单相接地故障电流大于三相短路故障电流。




十五、什么是电力系统序参数?零序参数有何特点?


对称的三相电路中,流过不同相序的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间,仍符合欧姆定律。任一元件两端的相序电压与流过该元件的相应的相序电流之比,称为该元件的序参数(阻抗)

零序参数(阻抗)与网络结构,特别是和变压器的接线方式及中性点接地方式有关。一般情况下,零序参数(阻抗)及零序网络结构与正、负序网络不一样。




十六、零序参数与变压器接线组别、中性点接地方式、输电线架空地线、相邻平行线路有何关系?


对于变压器,零序电抗与其结构(三个单相变压器组还是三柱变压器)、绕组的连接(△或Y)和接地与否等有关。

当三相变压器的一侧接成三角形或中性点不接地的星形时,从这一侧来看,变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。

对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。

零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。

平行架设的两回三相架空输电线路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样。这就使这种线路的零序阻抗进一步增大。




十七、什么叫电力系统的稳定运行?电力系统稳定共分几类?


当电力系统受到扰动后,能自动地恢复到原来的运行状态,或者凭借控制设备的作用过渡到新的稳定状态运行,即谓电力系统稳定运行。


电力系统的稳定从广义角度来看,可分为:

1、发电机同步运行的稳定性问题(根据电力系统所承受的扰动大小的不同,又可分为静态稳定、暂态稳定、动态稳定三大类);

2、电力系统无功不足引起的电压稳定性问题;

3、电力系统有功功率不足引起的频率稳定性问题。




十八、采用单相重合闸为什么可以提高暂态稳定性?


采用单相重合闸后,由于故障时切除的是故障相而不是三相,在切除故障相后至重合闸前的一段时间里,送电端和受电端没有完全失去联系(电气距离与切除三相相比,要小得多),这样可以减少加速面积,增加减速面积,提高暂态稳定性。




十九、简述同步发电机的同步振荡和异步振荡?


同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。这一过程即同步振荡,亦即发电机仍保持在同步运行状态下的振荡。

异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周

期性地变化,发电机与电网失去同步运行的状态。在异步振荡时,发电机一会工作在发电机状态,一会工作在电动机状态。




二十、如何区分系统发生的振荡属异步振荡还是同步振荡?

异步振荡其明显特征是:系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表、功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。

同步振荡时,其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。




二十一、系统振荡事故与短路事故有什么不同?


电力系统振荡和短路的主要区别是:

1、振荡时系统各点电压和电流值均作往复性摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时电流、电压值突然变化量很大。

2、振动时系统任何一点电流与电压之间的相位角都随功角的变化而改变;而短路时,电流与电压之间的角度是基本不变的。

3、振荡时系统三相是对称的;而短路时系统可能出现三相不对称。




二十二、引起电力系统异步振荡的主要原因是什么?


1、输电线路输送功率超过极限值造成静态稳定破坏;

2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;

3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;

4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;

5、电源间非同步合闸未能拖入同步。




二十三、系统振荡时的一般现象是什么?


1、发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。

2、连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零值一次。随着离振荡中心距离的增加,电压波动逐渐减少。如果联络线的阻抗较大,两侧电厂的电容也很大,则线路两端的电压振荡是较小的。

3、失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。




二十四、什么叫低频振荡?


并列运行的发电机间在小干扰下发生的频率为0。2~2。5赫兹范围内的持续振荡现象叫低频振荡。
 
 
 
 
 
 
来源:工控帮
智造家
浏览

pikaqiu 发表了文章 来自相关话题

浏览

pikaqiu 发表了文章 来自相关话题

510 浏览

智造家带你看工博会之《成都工具研究所》 2016年中国工博会数控机床展!

电气控制类 设备人 2016-10-26 17:38 发表了文章 来自相关话题

2016-10-26 中国工博会 数控机床与金属加工展
2016年11月1日至5日,第十八届中国国际工业博览会将在国家会展中心(上海)隆重举行。成都工具研究所(展位号:3H-B121)将亮相本次工博会。
成都工具研究所有限公司1956年创建于北京,是原国家机械工业部直属的机械行业唯一的综合性工具科研开发机构,1999年转制进入中国机械工业集团有限公司(SINOMACH)。现形成的产品有硬质合金石油管螺纹梳刀、轴承刀具、超硬刀具、数控刀具、深孔加工刀具、汽车刀具、型线刀具、主动量仪、激光干涉仪以及PVD、CVD、PCVD涂层技术服务、QPQ盐浴复合处理技术与装备等多种产品并存的产业结构。
产品介绍






高性能激光测量系统
成都工具研究所有限公司开发的基于双纵模稳频技术的高性能激光干涉仪新产品,属于“高档数控机床与基础制造装备”科技重大专项课题“高性能激光测量系统”和“激光多维测量系统的研究与开发”研究成果,该产品拥有激光干涉仪相关国家发明专利6项,建立了生产线,已批量供应市场。该产品具有精度高、使用维护方便、性价比高等特点,主要用于检定数控机床、坐标测量机等位置精度,以及长度精密测量,还可以测量小角度、平面度、直线度、平行度、垂直度等形位误差。其线性测量分辨率达到0.01µm;线性测量精度≤±0.5ppm;最高测量速度≥60m/min;稳频精度达到±0.05ppm。
此专项成果主要应用于数控机床生产制造厂、数控机床使用企业、质量监督检验单位等。可以用于:
1. 数控机床的出厂精度检定;
2. 数控机床生产和调试过程的监控;
3. 数控机床使用过程中的精度监测及误差补偿;
4. 作为数控机床动态特性研究的有效工具。
5.作为一种通用的长度计量仪器,可广泛用于坐标测量机、计量光栅、磁栅、感应同步器等动、静态精度检测。






汽车发动机关键零件加工专用刀具
成都工具研究所有限公司开发的“汽车发动机加工专用刀具”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “专用领域高效可转位刀具系列及超硬工具”的研究成果。
此专项成果主要应用于汽车发动机关键零件曲轴、缸体、缸盖、凸轮轴、连杆、变速箱、刹车盘、刹车鼓等的加工。专门针对铸铁加工自主开发的基体牌号GY70,已取得发明专利。该基体牌号具有高抗冲击韧性、高红硬性以及高热稳定性,主要应用于球墨铸铁曲轴、灰铁缸体缸盖等零件的高速、干式切削加工。
该产品已形成了年产50万片汽车发动机高效系列刀具刀片的生产能力,年销售额约900万元,已广泛应用于神龙汽车有限公司、一汽轿车、东风康明斯、东风公司49厂、烟台通用、广西玉柴、山东潍柴、济南柴油机股份有限公司、天津内燃机厂、飞亚曲轴等公司。由于对神龙汽车有限公司的EW曲轴生产线刀具成本降低做出了重大贡献,为此神龙公司特别发了感谢信。
该产品使用寿命达到进口刀具的80%以上,价比是进口刀片的1.4倍以上,竞争优势明显。






燃气轮机轮槽铣刀  
成都工具研究所有限公司开发的“燃气轮机轮槽铣刀”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “复杂数控刀具创新能力平台建设”的研究成果。
燃气轮机轮槽加工具有技术含量高、加工难度大的特点,是整个燃气轮机转子加工的重中之重,而轮槽的型线完全依靠轮槽型线铣刀加工完成,轮槽铣刀的精度决定了轮槽的精度。
我公司针对能源行业汽轮机和燃气轮机轮槽难加工材料,首先开发出专用加工刀具硬质合金基体材料,在优化刀具几何参数和整体刀具结构的同时,依靠独特的成型加工工艺成功开发出精密复杂硬质合金型线刀具产品。刀具型线轮廓精度达到±0.015mm,刀具节距精度达到±0.005mm,完全满足汽轮机、燃气轮机轮槽加工高精度的要求。此专项成果已在东方电气集团东方汽轮机有限公司和哈尔滨汽轮机有限责任公司等单位成功得到应用,切削性能指标达到国外同类先进刀具80%以上,一举打破国外刀具制造商对此类刀具产品的垄断和制造技术的封锁,已成功替代目前行业内普遍使用的进口整体高速钢刀具,加工效率提高1倍,切削寿命提高3倍以上,价格比同类进口整体硬质合金刀具便宜30%以上。
目前我公司现已成功建立一条具有自主知识产权的汽轮机和燃气轮机轮槽加工用系列化刀具生产线,已达到年产整体硬质合金型线刀具上万件能力。






难加工材料深孔加工刀具用BTA深孔钻
成都工具研究所有限公司开发的核电管板加工用内排屑深孔钻(产品系列φ16~φ25)和难加工材料加工用机夹可转位内排屑深孔钻(产品系列φ25~φ120)分别属于“高档数控机床与基础制造装备”科技重大专项课题“第三代核电关键零部件蒸汽发生器管板加工用系列化刀具”及“ 专用领域高效可转位刀具系列及超硬工具”研究成果。
 我公司研发的成套内排屑深孔钻系列产品,目前切削速度能达到加工高强度钢70~100m/min,高温合金钢20~65m/min,钛合金钢30~70m/min,切削精度为IT10级,表面粗糙度为Ra3.2,可加工长径比超过300的深孔零件,属国内领先技术水平。
该系列产品广泛应用于国防工业、航空航天、机床、发电设备制造、石油机械、钢铁、石化以及其它重型装备制造深孔加工领域。核电管板加工用内排屑深孔钻切削试验已在哈电集团(秦皇岛)重型装备有限公司取得圆满成功!切削寿命已达到国际先进同类产品技术水平。
这些系列产品的开发符合深孔加工领域发展的“低损耗,高效率”的总体思路,填补了我国在难加工材料用硬质合金内排屑深孔钻削加工方面机夹可转位刀具以及核电管板内排屑深孔加工刀具的空白,解决了目前国内所生产的焊接硬质合金内排屑深孔钻在使用过程中断屑难、效率低、寿命低等问题。与进口同类产品相比,这些系列产品有着极高的性价比优势。








  查看全部
2016-10-26 中国工博会 数控机床与金属加工展
2016年11月1日至5日,第十八届中国国际工业博览会将在国家会展中心(上海)隆重举行。成都工具研究所(展位号:3H-B121)将亮相本次工博会。
成都工具研究所有限公司1956年创建于北京,是原国家机械工业部直属的机械行业唯一的综合性工具科研开发机构,1999年转制进入中国机械工业集团有限公司(SINOMACH)。现形成的产品有硬质合金石油管螺纹梳刀、轴承刀具、超硬刀具、数控刀具、深孔加工刀具、汽车刀具、型线刀具、主动量仪、激光干涉仪以及PVD、CVD、PCVD涂层技术服务、QPQ盐浴复合处理技术与装备等多种产品并存的产业结构。

产品介绍



10.webp_.jpg


高性能激光测量系统
成都工具研究所有限公司开发的基于双纵模稳频技术的高性能激光干涉仪新产品,属于“高档数控机床与基础制造装备”科技重大专项课题“高性能激光测量系统”和“激光多维测量系统的研究与开发”研究成果,该产品拥有激光干涉仪相关国家发明专利6项,建立了生产线,已批量供应市场。该产品具有精度高、使用维护方便、性价比高等特点,主要用于检定数控机床、坐标测量机等位置精度,以及长度精密测量,还可以测量小角度、平面度、直线度、平行度、垂直度等形位误差。其线性测量分辨率达到0.01µm;线性测量精度≤±0.5ppm;最高测量速度≥60m/min;稳频精度达到±0.05ppm。
此专项成果主要应用于数控机床生产制造厂、数控机床使用企业、质量监督检验单位等。可以用于:
1. 数控机床的出厂精度检定;
2. 数控机床生产和调试过程的监控;
3. 数控机床使用过程中的精度监测及误差补偿;
4. 作为数控机床动态特性研究的有效工具。
5.作为一种通用的长度计量仪器,可广泛用于坐标测量机、计量光栅、磁栅、感应同步器等动、静态精度检测。

11.webp_.jpg


汽车发动机关键零件加工专用刀具
成都工具研究所有限公司开发的“汽车发动机加工专用刀具”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “专用领域高效可转位刀具系列及超硬工具”的研究成果。
此专项成果主要应用于汽车发动机关键零件曲轴、缸体、缸盖、凸轮轴、连杆、变速箱、刹车盘、刹车鼓等的加工。专门针对铸铁加工自主开发的基体牌号GY70,已取得发明专利。该基体牌号具有高抗冲击韧性、高红硬性以及高热稳定性,主要应用于球墨铸铁曲轴、灰铁缸体缸盖等零件的高速、干式切削加工。
该产品已形成了年产50万片汽车发动机高效系列刀具刀片的生产能力,年销售额约900万元,已广泛应用于神龙汽车有限公司、一汽轿车、东风康明斯、东风公司49厂、烟台通用、广西玉柴、山东潍柴、济南柴油机股份有限公司、天津内燃机厂、飞亚曲轴等公司。由于对神龙汽车有限公司的EW曲轴生产线刀具成本降低做出了重大贡献,为此神龙公司特别发了感谢信。
该产品使用寿命达到进口刀具的80%以上,价比是进口刀片的1.4倍以上,竞争优势明显。

12.webp_.jpg


燃气轮机轮槽铣刀  
成都工具研究所有限公司开发的“燃气轮机轮槽铣刀”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “复杂数控刀具创新能力平台建设”的研究成果。
燃气轮机轮槽加工具有技术含量高、加工难度大的特点,是整个燃气轮机转子加工的重中之重,而轮槽的型线完全依靠轮槽型线铣刀加工完成,轮槽铣刀的精度决定了轮槽的精度。
我公司针对能源行业汽轮机和燃气轮机轮槽难加工材料,首先开发出专用加工刀具硬质合金基体材料,在优化刀具几何参数和整体刀具结构的同时,依靠独特的成型加工工艺成功开发出精密复杂硬质合金型线刀具产品。刀具型线轮廓精度达到±0.015mm,刀具节距精度达到±0.005mm,完全满足汽轮机、燃气轮机轮槽加工高精度的要求。此专项成果已在东方电气集团东方汽轮机有限公司和哈尔滨汽轮机有限责任公司等单位成功得到应用,切削性能指标达到国外同类先进刀具80%以上,一举打破国外刀具制造商对此类刀具产品的垄断和制造技术的封锁,已成功替代目前行业内普遍使用的进口整体高速钢刀具,加工效率提高1倍,切削寿命提高3倍以上,价格比同类进口整体硬质合金刀具便宜30%以上。
目前我公司现已成功建立一条具有自主知识产权的汽轮机和燃气轮机轮槽加工用系列化刀具生产线,已达到年产整体硬质合金型线刀具上万件能力。

13.webp_.jpg


难加工材料深孔加工刀具用BTA深孔钻
成都工具研究所有限公司开发的核电管板加工用内排屑深孔钻(产品系列φ16~φ25)和难加工材料加工用机夹可转位内排屑深孔钻(产品系列φ25~φ120)分别属于“高档数控机床与基础制造装备”科技重大专项课题“第三代核电关键零部件蒸汽发生器管板加工用系列化刀具”及“ 专用领域高效可转位刀具系列及超硬工具”研究成果。
 我公司研发的成套内排屑深孔钻系列产品,目前切削速度能达到加工高强度钢70~100m/min,高温合金钢20~65m/min,钛合金钢30~70m/min,切削精度为IT10级,表面粗糙度为Ra3.2,可加工长径比超过300的深孔零件,属国内领先技术水平。
该系列产品广泛应用于国防工业、航空航天、机床、发电设备制造、石油机械、钢铁、石化以及其它重型装备制造深孔加工领域。核电管板加工用内排屑深孔钻切削试验已在哈电集团(秦皇岛)重型装备有限公司取得圆满成功!切削寿命已达到国际先进同类产品技术水平。
这些系列产品的开发符合深孔加工领域发展的“低损耗,高效率”的总体思路,填补了我国在难加工材料用硬质合金内排屑深孔钻削加工方面机夹可转位刀具以及核电管板内排屑深孔加工刀具的空白,解决了目前国内所生产的焊接硬质合金内排屑深孔钻在使用过程中断屑难、效率低、寿命低等问题。与进口同类产品相比,这些系列产品有着极高的性价比优势。

14.webp_.jpg




 
浏览

jingjing 发表了文章 来自相关话题

496 浏览

码垛机器人的六大优势

机械自动化类 一见你就笑 2016-10-24 14:07 发表了文章 来自相关话题

 




码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

   

  码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

1.码垛机器人操作范围大,安全性能好,在一个直线的情况,而且只用到一个电机,所以码垛的效果非常好。

2.码垛机器人在敞开式环境中进行操作,它拥有独立的连杆机构,而且它使用的是直线输送轨迹,所以非常平稳,传动的效率也是非常的高。

3.码垛机器人采用的是直线的导轨、输送机也是皮带型的标准件,如果有破坏的话,采购以及更换起来也很方便。

4.码垛机器人有很多不同规格的产品,从低到高速品种很多,所以选择范围也非常的广泛。

5.码垛机器人大多数零件都是在底部,手臂灵活,电量消耗的也慢,既节能又环保。而且就算是在高速运行的环境下,可靠性也是非常高的。

6.码垛机器人种类多样,规格也十分齐全,可以适用于多种环境下的工作,而且适用的范围也十分广泛。

使用码垛机器人不仅仅是提高了包装的工作效率,其简单的操作方式、方便的后期维护保养,同样也提高了企业的办事效率,降低了企业的生产成本以及人工成本投入。也正因为有这些优势,工业机器人才被越来越多的企业应用,为企业不断创造着价值。
 
 
 
 
 
来源:互联网
智造家提供 查看全部
 
4.1_.jpg

码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

   

  码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

1.码垛机器人操作范围大,安全性能好,在一个直线的情况,而且只用到一个电机,所以码垛的效果非常好。

2.码垛机器人在敞开式环境中进行操作,它拥有独立的连杆机构,而且它使用的是直线输送轨迹,所以非常平稳,传动的效率也是非常的高。

3.码垛机器人采用的是直线的导轨、输送机也是皮带型的标准件,如果有破坏的话,采购以及更换起来也很方便。

4.码垛机器人有很多不同规格的产品,从低到高速品种很多,所以选择范围也非常的广泛。

5.码垛机器人大多数零件都是在底部,手臂灵活,电量消耗的也慢,既节能又环保。而且就算是在高速运行的环境下,可靠性也是非常高的。

6.码垛机器人种类多样,规格也十分齐全,可以适用于多种环境下的工作,而且适用的范围也十分广泛。

使用码垛机器人不仅仅是提高了包装的工作效率,其简单的操作方式、方便的后期维护保养,同样也提高了企业的办事效率,降低了企业的生产成本以及人工成本投入。也正因为有这些优势,工业机器人才被越来越多的企业应用,为企业不断创造着价值。
 
 
 
 
 
来源:互联网
智造家提供
459 浏览

PLC控制器与人机界面的抗干扰对策

电气控制类 小螺号 2016-10-12 15:27 发表了文章 来自相关话题

进行具体工程的抗干扰设计时,要选择有较高抗干扰能力的产品,采取抑制干扰源、切断或衰减电磁干扰的传播途径和利用软件手段等措施,提高装置和系统的抗干扰能力。







1、采用性能优良的电源,抑制电网引入的干扰。

对于PLC控制器供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用专用线供电。选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。PLC控制器的24V直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对PLC控制器的干扰。此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件监控、与电网隔离等功能,可提高供电的安全可靠性。对于一些重要的设备,交流供电电路可采用双路供电系统。



2、正确选择电缆的和实施敷设,消除可编程控制器、人机界面的空间辐射干扰。

不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,增大电缆之间的夹角,以减少电磁干扰。为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。



3、PLC控制器输入输出通道的抗干扰措施。






输入模块的滤波可以降低输入信号的线间的差模干扰。为了降低输入信号与大地间的共模干扰,PLC控制器要良好接地。输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。

输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。另外,采用输出点串接中间继电器或光电耦合措施,可防止PLC控制器输出点直接接入电气控制回路,在电气上完全隔离。



4、PLC控制器抗干扰的软件措施。

由于电磁干扰的复杂性,仅采取硬件抗干扰措施是不够的,要用PLC控制器的软件抗干扰技术来加以配合,进一步提高系统的可靠性。采用数字滤波和工频整形采样、定时校正参考点电位等措施,有效消除周期性干扰、防止电位漂移。采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。例如对开关量输入信号,采用定时器延时的方式多次读入,结果一致再确认有效,提高了软件的可靠性。



5、正确选择接地点,完善接地系统。

良好的接地是保证PLC控制器可靠工作的重要条件,可以避免偶然发生的电压冲击危害,还可以抑制干扰。完善的接地系统是PLC控制器抗电磁干扰的重要措施之一。


PLC控制器属高速低电平控制装置,应采用直接接地方式。为了抑制加在电源及输入端、输出端的干扰,应给PLC控制器接上专用地线,接地点应与动力设备的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能靠近PLC控制器。集中布置的PLC控制器适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。分散布置的PLC控制器,应采用串联一点接地方式。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处,而且PLC控制器接地点必须与强电设备接地点相距10m以上。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。

信号源接地时,屏蔽层应在信号侧接地;信号源不接地时,应在PLC控制器侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,各屏蔽层应相互连接好。选择适当的接地处单点接地,要避免多点接地。



6、关于设备选型的问题。






在选择设备时,首先要了解国产PLC生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等,要选择有较高抗干扰能力的产品,如采用浮地技术、隔离性能好的可编程控制器、人机界面HMI。

可编程控制器、人机界面现场应用时的抗干扰问题,是复杂而细致的。抗干扰性设计是一个十分复杂的系统性工程,涉及到具体的输入输出设备和工业现场的具体环境,要求我们要综合考虑各方面的因素,必须根据现场的实际情况,从减少干扰源、切断干扰途径等方面进行全面的考虑,充分利用各种抗干扰措施来进行可编程控制器、人机界面的设计。才能真正提高可编程控制器、人机界面HMI现场应用时的抗干扰能力,确保系统安全稳定运行。




来源:工控论坛智造家提供 查看全部
进行具体工程的抗干扰设计时,要选择有较高抗干扰能力的产品,采取抑制干扰源、切断或衰减电磁干扰的传播途径和利用软件手段等措施,提高装置和系统的抗干扰能力。

4.1_.jpg



1、采用性能优良的电源,抑制电网引入的干扰。

对于PLC控制器供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用专用线供电。选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。PLC控制器的24V直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对PLC控制器的干扰。此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件监控、与电网隔离等功能,可提高供电的安全可靠性。对于一些重要的设备,交流供电电路可采用双路供电系统。



2、正确选择电缆的和实施敷设,消除可编程控制器、人机界面的空间辐射干扰。

不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,增大电缆之间的夹角,以减少电磁干扰。为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。



3、PLC控制器输入输出通道的抗干扰措施。

4.2_.JPG


输入模块的滤波可以降低输入信号的线间的差模干扰。为了降低输入信号与大地间的共模干扰,PLC控制器要良好接地。输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。

输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。另外,采用输出点串接中间继电器或光电耦合措施,可防止PLC控制器输出点直接接入电气控制回路,在电气上完全隔离。



4、PLC控制器抗干扰的软件措施。

由于电磁干扰的复杂性,仅采取硬件抗干扰措施是不够的,要用PLC控制器的软件抗干扰技术来加以配合,进一步提高系统的可靠性。采用数字滤波和工频整形采样、定时校正参考点电位等措施,有效消除周期性干扰、防止电位漂移。采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。例如对开关量输入信号,采用定时器延时的方式多次读入,结果一致再确认有效,提高了软件的可靠性。



5、正确选择接地点,完善接地系统。

良好的接地是保证PLC控制器可靠工作的重要条件,可以避免偶然发生的电压冲击危害,还可以抑制干扰。完善的接地系统是PLC控制器抗电磁干扰的重要措施之一。


PLC控制器属高速低电平控制装置,应采用直接接地方式。为了抑制加在电源及输入端、输出端的干扰,应给PLC控制器接上专用地线,接地点应与动力设备的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能靠近PLC控制器。集中布置的PLC控制器适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。分散布置的PLC控制器,应采用串联一点接地方式。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处,而且PLC控制器接地点必须与强电设备接地点相距10m以上。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。

信号源接地时,屏蔽层应在信号侧接地;信号源不接地时,应在PLC控制器侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,各屏蔽层应相互连接好。选择适当的接地处单点接地,要避免多点接地。



6、关于设备选型的问题。

4.3_.JPG


在选择设备时,首先要了解国产PLC生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等,要选择有较高抗干扰能力的产品,如采用浮地技术、隔离性能好的可编程控制器、人机界面HMI。

可编程控制器、人机界面现场应用时的抗干扰问题,是复杂而细致的。抗干扰性设计是一个十分复杂的系统性工程,涉及到具体的输入输出设备和工业现场的具体环境,要求我们要综合考虑各方面的因素,必须根据现场的实际情况,从减少干扰源、切断干扰途径等方面进行全面的考虑,充分利用各种抗干扰措施来进行可编程控制器、人机界面的设计。才能真正提高可编程控制器、人机界面HMI现场应用时的抗干扰能力,确保系统安全稳定运行。




  • 来源:工控论坛
  • 智造家提供

325 浏览

探秘一汽大众智能工厂 一分钟两台发动机下线

设备硬件类 凯麦亿精密机械 2016-12-14 11:29 发表了文章 来自相关话题

发动机是汽车的动力源


1769年,法国人N.J.居纽(Cugnot)

制造了世界上第一辆蒸汽驱动三轮汽车


1879年,卡尔.苯茨(KartBenz)

首次试验成功一台二冲程试验性发动机


汽车发动机一百多年的历史了

但你知道现在汽车发动机如何制造出来吗


生产EA211发动机

年产90万台

众多技术加持






















































































































































 
 
 
 
来源: 工控帮
智造家 查看全部
发动机是汽车的动力源


1769年,法国人N.J.居纽(Cugnot)

制造了世界上第一辆蒸汽驱动三轮汽车


1879年,卡尔.苯茨(KartBenz)

首次试验成功一台二冲程试验性发动机


汽车发动机一百多年的历史了

但你知道现在汽车发动机如何制造出来吗


生产EA211发动机

年产90万台

众多技术加持

4.1_.jpg


4.2_.jpg


4.3_.jpg


4.4_.jpg


4.5_.jpg


4.6_.jpg


4.7_.jpg


4.8_.jpg


4.9_.jpg


4.10_.jpg


4.11_.jpg


4.12_.jpg


4.13_.jpg


4.14_.jpg


4.15_.jpg


4.16_.jpg


4.17_.jpg


4.18_.jpg


4.19_.jpg


4.20_.jpg


4.21_.jpg


4.22_.jpg


4.23_.jpg


4.24_.jpg


4.25_.jpg


4.26_.jpg


4.27_.jpg


4.28_.jpg


4.29_.jpg


4.30_.jpg

 
 
 
 
来源: 工控帮
智造家
520 浏览

伺服电机使用中的这些问题,不容忽视

电气控制类 凯麦亿精密机械 2016-12-14 11:19 发表了文章 来自相关话题

伺服系统是机电产品中的重要环节,它能提供最高水平的动态响应和扭矩密度,所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。为了实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。


本文将浅析伺服电机在使用中的常见问题。



问题一噪声,不稳定


客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。


交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值进行比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。


举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。整个系统需要获得恒定的速度和较快的响应特性,分析其动作过程。


当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到像电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的不断增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。


在此例中,系统是振荡的,电机扭矩是波动的,负载速度也随之波动。其结果当然会是噪音、磨损、不稳定了。不过,这都不是由伺服电机引起的,这种噪声和不稳定性,是来源于机械传动装置,是由于伺服系统反应速度(高)与机械传递或者反应时间(较长)不相匹配而引起的,即伺服电机响应快于系统调整新的扭矩所需的时间。



找到了问题根源所在,再来解决当然就容易多了,针对以上例子,您可以:


(1)增加机械刚性和降低系统的惯性,减少机械传动部位的响应时间,如把V形带更换成直接丝杆传动或用齿轮箱代替V型带;

(2)降低伺服系统的响应速度,减少伺服系统的控制带宽,如降低伺服系统的增益参数值。


当然,以上只是噪声、不稳定的原因之一,针对不同的原因,会有不同的解决办法,如由机械共振引起的噪声,在伺服方面可采取共振抑制,低通滤波等方法,总之,噪声和不稳定的原因,基本上都不会是由于伺服电机本身所造成。



问题二惯性匹配


在伺服系统选型及调试中,常会碰到惯量问题!


具体表现为:


1、在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;

2、在调试时(手动模式下),正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前题,此点在要求高速高精度的系统上表现由为突出(台达伺服惯量比参数为1-37,JL/JM)。这样,就有了惯量匹配的问题!



那到底什么是“惯量匹配”呢?


1、根据牛顿第二定律:“进给系统所需力矩T=系统传动惯量J×角加速度θ

角加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。


2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM+电机轴换算的负载惯性动量JL

负载惯量JL由(以工具机为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。


知道了什么是惯量匹配,那惯量匹配具体有什么影响又如何确定呢?


影响:

传动惯量对伺服系统的精度,稳定性,动态响应都有影响,惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。


确定:


衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。例如,CNC中心机通过伺服电机作高速切削时,当负载惯量增加时,会发生:

(1)控制指令改变时,马达需花费较多时间才能达到新指令的速度要求;

(2)当机台沿二轴执行弧式曲线快速切削时,会发生较大误差:

①一般伺服电机通常状况下,当JL≦JM,则上面的问题不会发生

②当JL=3×JM,则马达的可控性会些微降低,但对平常的金属切削不会有影响。(高速曲线切削一般建议JL≦JM)

③当JL≧3×JM,马达的可控性会明显下降,在高速曲线切削时表现突出


不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。



问题三伺服电机选型


在选择好机械传动方案以后,就必须对伺服电机的型号和大小进行选择和确认。


(1)选型条件  —  一般情况下,选择伺服电机需满足下列情况:

  ●    马达最大转速>系统所需之最高移动转速;

  ●    马达的转子惯量与负载惯量相匹配;

  ●    连续负载工作扭力≦马达额定扭力;

  ●    马达最大输出扭力>系统所需最大扭力(加速时扭力)。



(2)选型计算:

  ●    惯量匹配计算(JL/JM)

  ●    回转速度计算(负载端转速,马达端转速)

  ●    负载扭矩计算(连续负载工作扭矩,加速时扭矩)
 
 
 
 
来源:网络
智造家 查看全部
伺服系统是机电产品中的重要环节,它能提供最高水平的动态响应和扭矩密度,所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。为了实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。


本文将浅析伺服电机在使用中的常见问题。



问题一噪声,不稳定


客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。


交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值进行比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。


举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。整个系统需要获得恒定的速度和较快的响应特性,分析其动作过程。


当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到像电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的不断增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。


在此例中,系统是振荡的,电机扭矩是波动的,负载速度也随之波动。其结果当然会是噪音、磨损、不稳定了。不过,这都不是由伺服电机引起的,这种噪声和不稳定性,是来源于机械传动装置,是由于伺服系统反应速度(高)与机械传递或者反应时间(较长)不相匹配而引起的,即伺服电机响应快于系统调整新的扭矩所需的时间。



找到了问题根源所在,再来解决当然就容易多了,针对以上例子,您可以:


(1)增加机械刚性和降低系统的惯性,减少机械传动部位的响应时间,如把V形带更换成直接丝杆传动或用齿轮箱代替V型带;

(2)降低伺服系统的响应速度,减少伺服系统的控制带宽,如降低伺服系统的增益参数值。


当然,以上只是噪声、不稳定的原因之一,针对不同的原因,会有不同的解决办法,如由机械共振引起的噪声,在伺服方面可采取共振抑制,低通滤波等方法,总之,噪声和不稳定的原因,基本上都不会是由于伺服电机本身所造成。



问题二惯性匹配


在伺服系统选型及调试中,常会碰到惯量问题!


具体表现为:


1、在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;

2、在调试时(手动模式下),正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前题,此点在要求高速高精度的系统上表现由为突出(台达伺服惯量比参数为1-37,JL/JM)。这样,就有了惯量匹配的问题!



那到底什么是“惯量匹配”呢?


1、根据牛顿第二定律:“进给系统所需力矩T=系统传动惯量J×角加速度θ

角加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。


2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM+电机轴换算的负载惯性动量JL

负载惯量JL由(以工具机为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。


知道了什么是惯量匹配,那惯量匹配具体有什么影响又如何确定呢?


影响:

传动惯量对伺服系统的精度,稳定性,动态响应都有影响,惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。


确定:


衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。例如,CNC中心机通过伺服电机作高速切削时,当负载惯量增加时,会发生:

(1)控制指令改变时,马达需花费较多时间才能达到新指令的速度要求;

(2)当机台沿二轴执行弧式曲线快速切削时,会发生较大误差:

①一般伺服电机通常状况下,当JL≦JM,则上面的问题不会发生

②当JL=3×JM,则马达的可控性会些微降低,但对平常的金属切削不会有影响。(高速曲线切削一般建议JL≦JM)

③当JL≧3×JM,马达的可控性会明显下降,在高速曲线切削时表现突出


不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。



问题三伺服电机选型


在选择好机械传动方案以后,就必须对伺服电机的型号和大小进行选择和确认。


(1)选型条件  —  一般情况下,选择伺服电机需满足下列情况:

  ●    马达最大转速>系统所需之最高移动转速;

  ●    马达的转子惯量与负载惯量相匹配;

  ●    连续负载工作扭力≦马达额定扭力;

  ●    马达最大输出扭力>系统所需最大扭力(加速时扭力)。



(2)选型计算:

  ●    惯量匹配计算(JL/JM)

  ●    回转速度计算(负载端转速,马达端转速)

  ●    负载扭矩计算(连续负载工作扭矩,加速时扭矩)
 
 
 
 
来源:网络
智造家
517 浏览

电力人面试常见的24个问题

智能制造类 喷漆李 2016-12-13 11:13 发表了文章 来自相关话题

一、什么是动力系统、电力系统、电力网?


通常把发电企业的动力设施、设备和发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能热能生产、输送、分配、使用的统一整体称为动力系统;

把由发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统;

把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。




二、现代电网有哪些特点?


1、由较强的超高压系统构成主网架。

2、各电网之间联系较强,电压等级相对简化。

3、具有足够的调峰、调频、调压容量,能够实现自动发电控制,有较高的供电可靠性。

4、具有相应的安全稳定控制系统,高度自动化的监控系统和高度现代化的通信系统。

5、具有适应电力市场运营的技术支持系统,有利于合理利用能源。




三、区域电网互联的意义与作用是什么?


1、可以合理利用能源,加强环境保护,有利于电力工业的可持续发展。

2、可安装大容量、高效能火电机组、水电机组和核电机组,有利于降低造价,节约能源,加快电力建设速度。

3、可以利用时差、温差,错开用电高峰,利用各地区用电的非同时性进行负荷调整,减少备用容量和装机容量。

4、可以在各地区之间互供电力、互通有无、互为备用,可减少事故备用容量,增强抵御事故能力,提高电网安全水平和供电可靠性。

5、能承受较大的冲击负荷,有利于改善电能质量。

6、可以跨流域调节水电,并在更大范围内进行水火电经济调度,取得更大的经济效益。




四、电网无功补偿的原则是什么?


电网无功补偿的原则是电网无功补偿应基本上按分层分区和就地平衡原则考虑,并应能随负荷或电压进行调整,保证系统各枢纽点的电压在正常和事故后均能满足规定的要求,避免经长距离线路或多级变压器传送无功功率。




五、简述电力系统电压特性与频率特性的区别是什么?


电力系统的频率特性取决于负荷的频率特性和发电机的频率特性(负荷随频率的变化而变化的特性叫负荷的频率特性。发电机组的出力随频率的变化而变化的特性叫发电机的频率特性),它是由系统的有功负荷平衡决定的,且与网络结构(网络阻抗)关系不大。在非振荡情况下,同一电力系统的稳态频率是相同的。因此,系统频率可以集中调整控制。

电力系统的电压特性与电力系统的频率特性则不相同。电力系统各节点的电压通常情况下是不完全相同的,主要取决于各区的有功和无功供需平衡情况,也与网络结构(网络阻抗)有较大关系。因此,电压不能全网集中统一调整,只能分区调整控制。




六、什么是系统电压监测点、中枢点?有何区别?电压中枢点一般如何选择?


监测电力系统电压值和考核电压质量的节点,称为电压监测点。电力系统中重要的电压支撑节点称为电压中枢点。因此,电压中枢点一定是电压监测点,而电压监测点却不一定是电压中枢点。


电压中枢点的选择原则是:

1)区域性水、火电厂的高压母线(高压母线有多回出线);

2)分区选择母线短路容量较大的220kV变电站母线;

3)有大量地方负荷的发电厂母线。




七、试述电力系统谐波对电网产生的影响?


谐波对电网的影响主要有:

谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。

谐波对线路的主要危害是引起附加损耗。

谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及安全自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。

限制电网谐波的主要措施有:

增加换流装置的脉动数;

加装交流滤波器、有源电力滤波器;加强谐波管理。




八、何谓潜供电流?它对重合闸有何影响?如何防止?


当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。

由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。

为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的措施:

如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。




九、什么叫电力系统理论线损和管理线损?


理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。




十、什么叫自然功率?


运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有功功率的数值叫做线路的"自然功率"或"波阻抗功率"。




十一、电力系统中性点接地方式有几种?什么叫大电流、小电流接地系统?其划分标准如何?


我国电力系统中性点接地方式主要有两种,即:

1、中性点直接接地方式(包括中性点经小电阻接地方式)。2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。

中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。

中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。

在我国划分标准为:X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统属于小接地电流系统

注:X0为系统零序电抗,X1为系统正序电抗。




十二、电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有什么特点?


电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。因这种系统中发生单相接地故障时,不直接构成短路回路,接地相电流不大,不必立即切除接地相,但这时非接地相的对地电压却升高为相电压的1。7倍。




十三、小电流接地系统中,为什么采用中性点经消弧线圈接地?


小电流接地系统中发生单相接地故障时,接地点将通过接地故障线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,使非故障相对地电压有较大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

为此,我国采取的措施是:当小电流接地系统电网发生单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为10A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障点电流减少,提高自动熄弧能力并能自动熄弧,保证继续供电。




十四、什么情况下单相接地故障电流大于三相短路故障电流?


当故障点零序综合阻抗小于正序综合阻抗时,单相接地故障电流将大于三相短路故障电流。例如:在大量采用自耦变压器的系统中,由于接地中性点多,系统故障点零序综合阻抗往往小于正序综合阻抗,这时单相接地故障电流大于三相短路故障电流。




十五、什么是电力系统序参数?零序参数有何特点?


对称的三相电路中,流过不同相序的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间,仍符合欧姆定律。任一元件两端的相序电压与流过该元件的相应的相序电流之比,称为该元件的序参数(阻抗)

零序参数(阻抗)与网络结构,特别是和变压器的接线方式及中性点接地方式有关。一般情况下,零序参数(阻抗)及零序网络结构与正、负序网络不一样。




十六、零序参数与变压器接线组别、中性点接地方式、输电线架空地线、相邻平行线路有何关系?


对于变压器,零序电抗与其结构(三个单相变压器组还是三柱变压器)、绕组的连接(△或Y)和接地与否等有关。

当三相变压器的一侧接成三角形或中性点不接地的星形时,从这一侧来看,变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。

对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。

零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。

平行架设的两回三相架空输电线路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样。这就使这种线路的零序阻抗进一步增大。




十七、什么叫电力系统的稳定运行?电力系统稳定共分几类?


当电力系统受到扰动后,能自动地恢复到原来的运行状态,或者凭借控制设备的作用过渡到新的稳定状态运行,即谓电力系统稳定运行。


电力系统的稳定从广义角度来看,可分为:

1、发电机同步运行的稳定性问题(根据电力系统所承受的扰动大小的不同,又可分为静态稳定、暂态稳定、动态稳定三大类);

2、电力系统无功不足引起的电压稳定性问题;

3、电力系统有功功率不足引起的频率稳定性问题。




十八、采用单相重合闸为什么可以提高暂态稳定性?


采用单相重合闸后,由于故障时切除的是故障相而不是三相,在切除故障相后至重合闸前的一段时间里,送电端和受电端没有完全失去联系(电气距离与切除三相相比,要小得多),这样可以减少加速面积,增加减速面积,提高暂态稳定性。




十九、简述同步发电机的同步振荡和异步振荡?


同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。这一过程即同步振荡,亦即发电机仍保持在同步运行状态下的振荡。

异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周

期性地变化,发电机与电网失去同步运行的状态。在异步振荡时,发电机一会工作在发电机状态,一会工作在电动机状态。




二十、如何区分系统发生的振荡属异步振荡还是同步振荡?

异步振荡其明显特征是:系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表、功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。

同步振荡时,其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。




二十一、系统振荡事故与短路事故有什么不同?


电力系统振荡和短路的主要区别是:

1、振荡时系统各点电压和电流值均作往复性摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时电流、电压值突然变化量很大。

2、振动时系统任何一点电流与电压之间的相位角都随功角的变化而改变;而短路时,电流与电压之间的角度是基本不变的。

3、振荡时系统三相是对称的;而短路时系统可能出现三相不对称。




二十二、引起电力系统异步振荡的主要原因是什么?


1、输电线路输送功率超过极限值造成静态稳定破坏;

2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;

3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;

4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;

5、电源间非同步合闸未能拖入同步。




二十三、系统振荡时的一般现象是什么?


1、发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。

2、连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零值一次。随着离振荡中心距离的增加,电压波动逐渐减少。如果联络线的阻抗较大,两侧电厂的电容也很大,则线路两端的电压振荡是较小的。

3、失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。




二十四、什么叫低频振荡?


并列运行的发电机间在小干扰下发生的频率为0。2~2。5赫兹范围内的持续振荡现象叫低频振荡。
 
 
 
 
 
 
来源:工控帮
智造家 查看全部
一、什么是动力系统、电力系统、电力网?


通常把发电企业的动力设施、设备和发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能热能生产、输送、分配、使用的统一整体称为动力系统;

把由发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统;

把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。




二、现代电网有哪些特点?


1、由较强的超高压系统构成主网架。

2、各电网之间联系较强,电压等级相对简化。

3、具有足够的调峰、调频、调压容量,能够实现自动发电控制,有较高的供电可靠性。

4、具有相应的安全稳定控制系统,高度自动化的监控系统和高度现代化的通信系统。

5、具有适应电力市场运营的技术支持系统,有利于合理利用能源。




三、区域电网互联的意义与作用是什么?


1、可以合理利用能源,加强环境保护,有利于电力工业的可持续发展。

2、可安装大容量、高效能火电机组、水电机组和核电机组,有利于降低造价,节约能源,加快电力建设速度。

3、可以利用时差、温差,错开用电高峰,利用各地区用电的非同时性进行负荷调整,减少备用容量和装机容量。

4、可以在各地区之间互供电力、互通有无、互为备用,可减少事故备用容量,增强抵御事故能力,提高电网安全水平和供电可靠性。

5、能承受较大的冲击负荷,有利于改善电能质量。

6、可以跨流域调节水电,并在更大范围内进行水火电经济调度,取得更大的经济效益。




四、电网无功补偿的原则是什么?


电网无功补偿的原则是电网无功补偿应基本上按分层分区和就地平衡原则考虑,并应能随负荷或电压进行调整,保证系统各枢纽点的电压在正常和事故后均能满足规定的要求,避免经长距离线路或多级变压器传送无功功率。




五、简述电力系统电压特性与频率特性的区别是什么?


电力系统的频率特性取决于负荷的频率特性和发电机的频率特性(负荷随频率的变化而变化的特性叫负荷的频率特性。发电机组的出力随频率的变化而变化的特性叫发电机的频率特性),它是由系统的有功负荷平衡决定的,且与网络结构(网络阻抗)关系不大。在非振荡情况下,同一电力系统的稳态频率是相同的。因此,系统频率可以集中调整控制。

电力系统的电压特性与电力系统的频率特性则不相同。电力系统各节点的电压通常情况下是不完全相同的,主要取决于各区的有功和无功供需平衡情况,也与网络结构(网络阻抗)有较大关系。因此,电压不能全网集中统一调整,只能分区调整控制。




六、什么是系统电压监测点、中枢点?有何区别?电压中枢点一般如何选择?


监测电力系统电压值和考核电压质量的节点,称为电压监测点。电力系统中重要的电压支撑节点称为电压中枢点。因此,电压中枢点一定是电压监测点,而电压监测点却不一定是电压中枢点。


电压中枢点的选择原则是:

1)区域性水、火电厂的高压母线(高压母线有多回出线);

2)分区选择母线短路容量较大的220kV变电站母线;

3)有大量地方负荷的发电厂母线。




七、试述电力系统谐波对电网产生的影响?


谐波对电网的影响主要有:

谐波对旋转设备和变压器的主要危害是引起附加损耗和发热增加,此外谐波还会引起旋转设备和变压器振动并发出噪声,长时间的振动会造成金属疲劳和机械损坏。

谐波对线路的主要危害是引起附加损耗。

谐波可引起系统的电感、电容发生谐振,使谐波放大。当谐波引起系统谐振时,谐波电压升高,谐波电流增大,引起继电保护及安全自动装置误动,损坏系统设备(如电力电容器、电缆、电动机等),引发系统事故,威胁电力系统的安全运行。谐波可干扰通信设备,增加电力系统的功率损耗(如线损),使无功补偿设备不能正常运行等,给系统和用户带来危害。

限制电网谐波的主要措施有:

增加换流装置的脉动数;

加装交流滤波器、有源电力滤波器;加强谐波管理。




八、何谓潜供电流?它对重合闸有何影响?如何防止?


当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。

由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。

为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的措施:

如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。




九、什么叫电力系统理论线损和管理线损?


理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。




十、什么叫自然功率?


运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有功功率的数值叫做线路的"自然功率"或"波阻抗功率"。




十一、电力系统中性点接地方式有几种?什么叫大电流、小电流接地系统?其划分标准如何?


我国电力系统中性点接地方式主要有两种,即:

1、中性点直接接地方式(包括中性点经小电阻接地方式)。2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。

中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。

中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。

在我国划分标准为:X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统属于小接地电流系统

注:X0为系统零序电抗,X1为系统正序电抗。




十二、电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有什么特点?


电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。因这种系统中发生单相接地故障时,不直接构成短路回路,接地相电流不大,不必立即切除接地相,但这时非接地相的对地电压却升高为相电压的1。7倍。




十三、小电流接地系统中,为什么采用中性点经消弧线圈接地?


小电流接地系统中发生单相接地故障时,接地点将通过接地故障线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,使非故障相对地电压有较大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

为此,我国采取的措施是:当小电流接地系统电网发生单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为10A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障点电流减少,提高自动熄弧能力并能自动熄弧,保证继续供电。




十四、什么情况下单相接地故障电流大于三相短路故障电流?


当故障点零序综合阻抗小于正序综合阻抗时,单相接地故障电流将大于三相短路故障电流。例如:在大量采用自耦变压器的系统中,由于接地中性点多,系统故障点零序综合阻抗往往小于正序综合阻抗,这时单相接地故障电流大于三相短路故障电流。




十五、什么是电力系统序参数?零序参数有何特点?


对称的三相电路中,流过不同相序的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间,仍符合欧姆定律。任一元件两端的相序电压与流过该元件的相应的相序电流之比,称为该元件的序参数(阻抗)

零序参数(阻抗)与网络结构,特别是和变压器的接线方式及中性点接地方式有关。一般情况下,零序参数(阻抗)及零序网络结构与正、负序网络不一样。




十六、零序参数与变压器接线组别、中性点接地方式、输电线架空地线、相邻平行线路有何关系?


对于变压器,零序电抗与其结构(三个单相变压器组还是三柱变压器)、绕组的连接(△或Y)和接地与否等有关。

当三相变压器的一侧接成三角形或中性点不接地的星形时,从这一侧来看,变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。

对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。

零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。

平行架设的两回三相架空输电线路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样。这就使这种线路的零序阻抗进一步增大。




十七、什么叫电力系统的稳定运行?电力系统稳定共分几类?


当电力系统受到扰动后,能自动地恢复到原来的运行状态,或者凭借控制设备的作用过渡到新的稳定状态运行,即谓电力系统稳定运行。


电力系统的稳定从广义角度来看,可分为:

1、发电机同步运行的稳定性问题(根据电力系统所承受的扰动大小的不同,又可分为静态稳定、暂态稳定、动态稳定三大类);

2、电力系统无功不足引起的电压稳定性问题;

3、电力系统有功功率不足引起的频率稳定性问题。




十八、采用单相重合闸为什么可以提高暂态稳定性?


采用单相重合闸后,由于故障时切除的是故障相而不是三相,在切除故障相后至重合闸前的一段时间里,送电端和受电端没有完全失去联系(电气距离与切除三相相比,要小得多),这样可以减少加速面积,增加减速面积,提高暂态稳定性。




十九、简述同步发电机的同步振荡和异步振荡?


同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。这一过程即同步振荡,亦即发电机仍保持在同步运行状态下的振荡。

异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周

期性地变化,发电机与电网失去同步运行的状态。在异步振荡时,发电机一会工作在发电机状态,一会工作在电动机状态。




二十、如何区分系统发生的振荡属异步振荡还是同步振荡?

异步振荡其明显特征是:系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表、功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。

同步振荡时,其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。




二十一、系统振荡事故与短路事故有什么不同?


电力系统振荡和短路的主要区别是:

1、振荡时系统各点电压和电流值均作往复性摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时电流、电压值突然变化量很大。

2、振动时系统任何一点电流与电压之间的相位角都随功角的变化而改变;而短路时,电流与电压之间的角度是基本不变的。

3、振荡时系统三相是对称的;而短路时系统可能出现三相不对称。




二十二、引起电力系统异步振荡的主要原因是什么?


1、输电线路输送功率超过极限值造成静态稳定破坏;

2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;

3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;

4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;

5、电源间非同步合闸未能拖入同步。




二十三、系统振荡时的一般现象是什么?


1、发电机,变压器,线路的电压表,电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。

2、连接失去同步的发电机或系统的联络线上的电流表和功率表摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零值一次。随着离振荡中心距离的增加,电压波动逐渐减少。如果联络线的阻抗较大,两侧电厂的电容也很大,则线路两端的电压振荡是较小的。

3、失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。




二十四、什么叫低频振荡?


并列运行的发电机间在小干扰下发生的频率为0。2~2。5赫兹范围内的持续振荡现象叫低频振荡。
 
 
 
 
 
 
来源:工控帮
智造家
510 浏览

智造家带你看工博会之《成都工具研究所》 2016年中国工博会数控机床展!

电气控制类 设备人 2016-10-26 17:38 发表了文章 来自相关话题

2016-10-26 中国工博会 数控机床与金属加工展
2016年11月1日至5日,第十八届中国国际工业博览会将在国家会展中心(上海)隆重举行。成都工具研究所(展位号:3H-B121)将亮相本次工博会。
成都工具研究所有限公司1956年创建于北京,是原国家机械工业部直属的机械行业唯一的综合性工具科研开发机构,1999年转制进入中国机械工业集团有限公司(SINOMACH)。现形成的产品有硬质合金石油管螺纹梳刀、轴承刀具、超硬刀具、数控刀具、深孔加工刀具、汽车刀具、型线刀具、主动量仪、激光干涉仪以及PVD、CVD、PCVD涂层技术服务、QPQ盐浴复合处理技术与装备等多种产品并存的产业结构。
产品介绍






高性能激光测量系统
成都工具研究所有限公司开发的基于双纵模稳频技术的高性能激光干涉仪新产品,属于“高档数控机床与基础制造装备”科技重大专项课题“高性能激光测量系统”和“激光多维测量系统的研究与开发”研究成果,该产品拥有激光干涉仪相关国家发明专利6项,建立了生产线,已批量供应市场。该产品具有精度高、使用维护方便、性价比高等特点,主要用于检定数控机床、坐标测量机等位置精度,以及长度精密测量,还可以测量小角度、平面度、直线度、平行度、垂直度等形位误差。其线性测量分辨率达到0.01µm;线性测量精度≤±0.5ppm;最高测量速度≥60m/min;稳频精度达到±0.05ppm。
此专项成果主要应用于数控机床生产制造厂、数控机床使用企业、质量监督检验单位等。可以用于:
1. 数控机床的出厂精度检定;
2. 数控机床生产和调试过程的监控;
3. 数控机床使用过程中的精度监测及误差补偿;
4. 作为数控机床动态特性研究的有效工具。
5.作为一种通用的长度计量仪器,可广泛用于坐标测量机、计量光栅、磁栅、感应同步器等动、静态精度检测。






汽车发动机关键零件加工专用刀具
成都工具研究所有限公司开发的“汽车发动机加工专用刀具”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “专用领域高效可转位刀具系列及超硬工具”的研究成果。
此专项成果主要应用于汽车发动机关键零件曲轴、缸体、缸盖、凸轮轴、连杆、变速箱、刹车盘、刹车鼓等的加工。专门针对铸铁加工自主开发的基体牌号GY70,已取得发明专利。该基体牌号具有高抗冲击韧性、高红硬性以及高热稳定性,主要应用于球墨铸铁曲轴、灰铁缸体缸盖等零件的高速、干式切削加工。
该产品已形成了年产50万片汽车发动机高效系列刀具刀片的生产能力,年销售额约900万元,已广泛应用于神龙汽车有限公司、一汽轿车、东风康明斯、东风公司49厂、烟台通用、广西玉柴、山东潍柴、济南柴油机股份有限公司、天津内燃机厂、飞亚曲轴等公司。由于对神龙汽车有限公司的EW曲轴生产线刀具成本降低做出了重大贡献,为此神龙公司特别发了感谢信。
该产品使用寿命达到进口刀具的80%以上,价比是进口刀片的1.4倍以上,竞争优势明显。






燃气轮机轮槽铣刀  
成都工具研究所有限公司开发的“燃气轮机轮槽铣刀”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “复杂数控刀具创新能力平台建设”的研究成果。
燃气轮机轮槽加工具有技术含量高、加工难度大的特点,是整个燃气轮机转子加工的重中之重,而轮槽的型线完全依靠轮槽型线铣刀加工完成,轮槽铣刀的精度决定了轮槽的精度。
我公司针对能源行业汽轮机和燃气轮机轮槽难加工材料,首先开发出专用加工刀具硬质合金基体材料,在优化刀具几何参数和整体刀具结构的同时,依靠独特的成型加工工艺成功开发出精密复杂硬质合金型线刀具产品。刀具型线轮廓精度达到±0.015mm,刀具节距精度达到±0.005mm,完全满足汽轮机、燃气轮机轮槽加工高精度的要求。此专项成果已在东方电气集团东方汽轮机有限公司和哈尔滨汽轮机有限责任公司等单位成功得到应用,切削性能指标达到国外同类先进刀具80%以上,一举打破国外刀具制造商对此类刀具产品的垄断和制造技术的封锁,已成功替代目前行业内普遍使用的进口整体高速钢刀具,加工效率提高1倍,切削寿命提高3倍以上,价格比同类进口整体硬质合金刀具便宜30%以上。
目前我公司现已成功建立一条具有自主知识产权的汽轮机和燃气轮机轮槽加工用系列化刀具生产线,已达到年产整体硬质合金型线刀具上万件能力。






难加工材料深孔加工刀具用BTA深孔钻
成都工具研究所有限公司开发的核电管板加工用内排屑深孔钻(产品系列φ16~φ25)和难加工材料加工用机夹可转位内排屑深孔钻(产品系列φ25~φ120)分别属于“高档数控机床与基础制造装备”科技重大专项课题“第三代核电关键零部件蒸汽发生器管板加工用系列化刀具”及“ 专用领域高效可转位刀具系列及超硬工具”研究成果。
 我公司研发的成套内排屑深孔钻系列产品,目前切削速度能达到加工高强度钢70~100m/min,高温合金钢20~65m/min,钛合金钢30~70m/min,切削精度为IT10级,表面粗糙度为Ra3.2,可加工长径比超过300的深孔零件,属国内领先技术水平。
该系列产品广泛应用于国防工业、航空航天、机床、发电设备制造、石油机械、钢铁、石化以及其它重型装备制造深孔加工领域。核电管板加工用内排屑深孔钻切削试验已在哈电集团(秦皇岛)重型装备有限公司取得圆满成功!切削寿命已达到国际先进同类产品技术水平。
这些系列产品的开发符合深孔加工领域发展的“低损耗,高效率”的总体思路,填补了我国在难加工材料用硬质合金内排屑深孔钻削加工方面机夹可转位刀具以及核电管板内排屑深孔加工刀具的空白,解决了目前国内所生产的焊接硬质合金内排屑深孔钻在使用过程中断屑难、效率低、寿命低等问题。与进口同类产品相比,这些系列产品有着极高的性价比优势。








  查看全部
2016-10-26 中国工博会 数控机床与金属加工展
2016年11月1日至5日,第十八届中国国际工业博览会将在国家会展中心(上海)隆重举行。成都工具研究所(展位号:3H-B121)将亮相本次工博会。
成都工具研究所有限公司1956年创建于北京,是原国家机械工业部直属的机械行业唯一的综合性工具科研开发机构,1999年转制进入中国机械工业集团有限公司(SINOMACH)。现形成的产品有硬质合金石油管螺纹梳刀、轴承刀具、超硬刀具、数控刀具、深孔加工刀具、汽车刀具、型线刀具、主动量仪、激光干涉仪以及PVD、CVD、PCVD涂层技术服务、QPQ盐浴复合处理技术与装备等多种产品并存的产业结构。

产品介绍



10.webp_.jpg


高性能激光测量系统
成都工具研究所有限公司开发的基于双纵模稳频技术的高性能激光干涉仪新产品,属于“高档数控机床与基础制造装备”科技重大专项课题“高性能激光测量系统”和“激光多维测量系统的研究与开发”研究成果,该产品拥有激光干涉仪相关国家发明专利6项,建立了生产线,已批量供应市场。该产品具有精度高、使用维护方便、性价比高等特点,主要用于检定数控机床、坐标测量机等位置精度,以及长度精密测量,还可以测量小角度、平面度、直线度、平行度、垂直度等形位误差。其线性测量分辨率达到0.01µm;线性测量精度≤±0.5ppm;最高测量速度≥60m/min;稳频精度达到±0.05ppm。
此专项成果主要应用于数控机床生产制造厂、数控机床使用企业、质量监督检验单位等。可以用于:
1. 数控机床的出厂精度检定;
2. 数控机床生产和调试过程的监控;
3. 数控机床使用过程中的精度监测及误差补偿;
4. 作为数控机床动态特性研究的有效工具。
5.作为一种通用的长度计量仪器,可广泛用于坐标测量机、计量光栅、磁栅、感应同步器等动、静态精度检测。

11.webp_.jpg


汽车发动机关键零件加工专用刀具
成都工具研究所有限公司开发的“汽车发动机加工专用刀具”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “专用领域高效可转位刀具系列及超硬工具”的研究成果。
此专项成果主要应用于汽车发动机关键零件曲轴、缸体、缸盖、凸轮轴、连杆、变速箱、刹车盘、刹车鼓等的加工。专门针对铸铁加工自主开发的基体牌号GY70,已取得发明专利。该基体牌号具有高抗冲击韧性、高红硬性以及高热稳定性,主要应用于球墨铸铁曲轴、灰铁缸体缸盖等零件的高速、干式切削加工。
该产品已形成了年产50万片汽车发动机高效系列刀具刀片的生产能力,年销售额约900万元,已广泛应用于神龙汽车有限公司、一汽轿车、东风康明斯、东风公司49厂、烟台通用、广西玉柴、山东潍柴、济南柴油机股份有限公司、天津内燃机厂、飞亚曲轴等公司。由于对神龙汽车有限公司的EW曲轴生产线刀具成本降低做出了重大贡献,为此神龙公司特别发了感谢信。
该产品使用寿命达到进口刀具的80%以上,价比是进口刀片的1.4倍以上,竞争优势明显。

12.webp_.jpg


燃气轮机轮槽铣刀  
成都工具研究所有限公司开发的“燃气轮机轮槽铣刀”产品,属于“高档数控机床与基础制造装备”科技重大专项课题 “复杂数控刀具创新能力平台建设”的研究成果。
燃气轮机轮槽加工具有技术含量高、加工难度大的特点,是整个燃气轮机转子加工的重中之重,而轮槽的型线完全依靠轮槽型线铣刀加工完成,轮槽铣刀的精度决定了轮槽的精度。
我公司针对能源行业汽轮机和燃气轮机轮槽难加工材料,首先开发出专用加工刀具硬质合金基体材料,在优化刀具几何参数和整体刀具结构的同时,依靠独特的成型加工工艺成功开发出精密复杂硬质合金型线刀具产品。刀具型线轮廓精度达到±0.015mm,刀具节距精度达到±0.005mm,完全满足汽轮机、燃气轮机轮槽加工高精度的要求。此专项成果已在东方电气集团东方汽轮机有限公司和哈尔滨汽轮机有限责任公司等单位成功得到应用,切削性能指标达到国外同类先进刀具80%以上,一举打破国外刀具制造商对此类刀具产品的垄断和制造技术的封锁,已成功替代目前行业内普遍使用的进口整体高速钢刀具,加工效率提高1倍,切削寿命提高3倍以上,价格比同类进口整体硬质合金刀具便宜30%以上。
目前我公司现已成功建立一条具有自主知识产权的汽轮机和燃气轮机轮槽加工用系列化刀具生产线,已达到年产整体硬质合金型线刀具上万件能力。

13.webp_.jpg


难加工材料深孔加工刀具用BTA深孔钻
成都工具研究所有限公司开发的核电管板加工用内排屑深孔钻(产品系列φ16~φ25)和难加工材料加工用机夹可转位内排屑深孔钻(产品系列φ25~φ120)分别属于“高档数控机床与基础制造装备”科技重大专项课题“第三代核电关键零部件蒸汽发生器管板加工用系列化刀具”及“ 专用领域高效可转位刀具系列及超硬工具”研究成果。
 我公司研发的成套内排屑深孔钻系列产品,目前切削速度能达到加工高强度钢70~100m/min,高温合金钢20~65m/min,钛合金钢30~70m/min,切削精度为IT10级,表面粗糙度为Ra3.2,可加工长径比超过300的深孔零件,属国内领先技术水平。
该系列产品广泛应用于国防工业、航空航天、机床、发电设备制造、石油机械、钢铁、石化以及其它重型装备制造深孔加工领域。核电管板加工用内排屑深孔钻切削试验已在哈电集团(秦皇岛)重型装备有限公司取得圆满成功!切削寿命已达到国际先进同类产品技术水平。
这些系列产品的开发符合深孔加工领域发展的“低损耗,高效率”的总体思路,填补了我国在难加工材料用硬质合金内排屑深孔钻削加工方面机夹可转位刀具以及核电管板内排屑深孔加工刀具的空白,解决了目前国内所生产的焊接硬质合金内排屑深孔钻在使用过程中断屑难、效率低、寿命低等问题。与进口同类产品相比,这些系列产品有着极高的性价比优势。

14.webp_.jpg




 
496 浏览

码垛机器人的六大优势

机械自动化类 一见你就笑 2016-10-24 14:07 发表了文章 来自相关话题

 




码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

   

  码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

1.码垛机器人操作范围大,安全性能好,在一个直线的情况,而且只用到一个电机,所以码垛的效果非常好。

2.码垛机器人在敞开式环境中进行操作,它拥有独立的连杆机构,而且它使用的是直线输送轨迹,所以非常平稳,传动的效率也是非常的高。

3.码垛机器人采用的是直线的导轨、输送机也是皮带型的标准件,如果有破坏的话,采购以及更换起来也很方便。

4.码垛机器人有很多不同规格的产品,从低到高速品种很多,所以选择范围也非常的广泛。

5.码垛机器人大多数零件都是在底部,手臂灵活,电量消耗的也慢,既节能又环保。而且就算是在高速运行的环境下,可靠性也是非常高的。

6.码垛机器人种类多样,规格也十分齐全,可以适用于多种环境下的工作,而且适用的范围也十分广泛。

使用码垛机器人不仅仅是提高了包装的工作效率,其简单的操作方式、方便的后期维护保养,同样也提高了企业的办事效率,降低了企业的生产成本以及人工成本投入。也正因为有这些优势,工业机器人才被越来越多的企业应用,为企业不断创造着价值。
 
 
 
 
 
来源:互联网
智造家提供 查看全部
 
4.1_.jpg

码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

   

  码垛机器人是用来堆放物品的一种机器人,根据不同的产品类型和实际需求,可以对码垛机器人进行编程,可以提高码垛工作的生产效率,现如今,码垛机器人已经被应用于各行各业,那么相比其他方式,使用机器人码垛又有怎样的优势呢?

1.码垛机器人操作范围大,安全性能好,在一个直线的情况,而且只用到一个电机,所以码垛的效果非常好。

2.码垛机器人在敞开式环境中进行操作,它拥有独立的连杆机构,而且它使用的是直线输送轨迹,所以非常平稳,传动的效率也是非常的高。

3.码垛机器人采用的是直线的导轨、输送机也是皮带型的标准件,如果有破坏的话,采购以及更换起来也很方便。

4.码垛机器人有很多不同规格的产品,从低到高速品种很多,所以选择范围也非常的广泛。

5.码垛机器人大多数零件都是在底部,手臂灵活,电量消耗的也慢,既节能又环保。而且就算是在高速运行的环境下,可靠性也是非常高的。

6.码垛机器人种类多样,规格也十分齐全,可以适用于多种环境下的工作,而且适用的范围也十分广泛。

使用码垛机器人不仅仅是提高了包装的工作效率,其简单的操作方式、方便的后期维护保养,同样也提高了企业的办事效率,降低了企业的生产成本以及人工成本投入。也正因为有这些优势,工业机器人才被越来越多的企业应用,为企业不断创造着价值。
 
 
 
 
 
来源:互联网
智造家提供
459 浏览

PLC控制器与人机界面的抗干扰对策

电气控制类 小螺号 2016-10-12 15:27 发表了文章 来自相关话题

进行具体工程的抗干扰设计时,要选择有较高抗干扰能力的产品,采取抑制干扰源、切断或衰减电磁干扰的传播途径和利用软件手段等措施,提高装置和系统的抗干扰能力。







1、采用性能优良的电源,抑制电网引入的干扰。

对于PLC控制器供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用专用线供电。选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。PLC控制器的24V直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对PLC控制器的干扰。此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件监控、与电网隔离等功能,可提高供电的安全可靠性。对于一些重要的设备,交流供电电路可采用双路供电系统。



2、正确选择电缆的和实施敷设,消除可编程控制器、人机界面的空间辐射干扰。

不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,增大电缆之间的夹角,以减少电磁干扰。为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。



3、PLC控制器输入输出通道的抗干扰措施。






输入模块的滤波可以降低输入信号的线间的差模干扰。为了降低输入信号与大地间的共模干扰,PLC控制器要良好接地。输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。

输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。另外,采用输出点串接中间继电器或光电耦合措施,可防止PLC控制器输出点直接接入电气控制回路,在电气上完全隔离。



4、PLC控制器抗干扰的软件措施。

由于电磁干扰的复杂性,仅采取硬件抗干扰措施是不够的,要用PLC控制器的软件抗干扰技术来加以配合,进一步提高系统的可靠性。采用数字滤波和工频整形采样、定时校正参考点电位等措施,有效消除周期性干扰、防止电位漂移。采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。例如对开关量输入信号,采用定时器延时的方式多次读入,结果一致再确认有效,提高了软件的可靠性。



5、正确选择接地点,完善接地系统。

良好的接地是保证PLC控制器可靠工作的重要条件,可以避免偶然发生的电压冲击危害,还可以抑制干扰。完善的接地系统是PLC控制器抗电磁干扰的重要措施之一。


PLC控制器属高速低电平控制装置,应采用直接接地方式。为了抑制加在电源及输入端、输出端的干扰,应给PLC控制器接上专用地线,接地点应与动力设备的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能靠近PLC控制器。集中布置的PLC控制器适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。分散布置的PLC控制器,应采用串联一点接地方式。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处,而且PLC控制器接地点必须与强电设备接地点相距10m以上。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。

信号源接地时,屏蔽层应在信号侧接地;信号源不接地时,应在PLC控制器侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,各屏蔽层应相互连接好。选择适当的接地处单点接地,要避免多点接地。



6、关于设备选型的问题。






在选择设备时,首先要了解国产PLC生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等,要选择有较高抗干扰能力的产品,如采用浮地技术、隔离性能好的可编程控制器、人机界面HMI。

可编程控制器、人机界面现场应用时的抗干扰问题,是复杂而细致的。抗干扰性设计是一个十分复杂的系统性工程,涉及到具体的输入输出设备和工业现场的具体环境,要求我们要综合考虑各方面的因素,必须根据现场的实际情况,从减少干扰源、切断干扰途径等方面进行全面的考虑,充分利用各种抗干扰措施来进行可编程控制器、人机界面的设计。才能真正提高可编程控制器、人机界面HMI现场应用时的抗干扰能力,确保系统安全稳定运行。




来源:工控论坛智造家提供 查看全部
进行具体工程的抗干扰设计时,要选择有较高抗干扰能力的产品,采取抑制干扰源、切断或衰减电磁干扰的传播途径和利用软件手段等措施,提高装置和系统的抗干扰能力。

4.1_.jpg



1、采用性能优良的电源,抑制电网引入的干扰。

对于PLC控制器供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用专用线供电。选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。PLC控制器的24V直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对PLC控制器的干扰。此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件监控、与电网隔离等功能,可提高供电的安全可靠性。对于一些重要的设备,交流供电电路可采用双路供电系统。



2、正确选择电缆的和实施敷设,消除可编程控制器、人机界面的空间辐射干扰。

不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,增大电缆之间的夹角,以减少电磁干扰。为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。



3、PLC控制器输入输出通道的抗干扰措施。

4.2_.JPG


输入模块的滤波可以降低输入信号的线间的差模干扰。为了降低输入信号与大地间的共模干扰,PLC控制器要良好接地。输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。

输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。另外,采用输出点串接中间继电器或光电耦合措施,可防止PLC控制器输出点直接接入电气控制回路,在电气上完全隔离。



4、PLC控制器抗干扰的软件措施。

由于电磁干扰的复杂性,仅采取硬件抗干扰措施是不够的,要用PLC控制器的软件抗干扰技术来加以配合,进一步提高系统的可靠性。采用数字滤波和工频整形采样、定时校正参考点电位等措施,有效消除周期性干扰、防止电位漂移。采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。例如对开关量输入信号,采用定时器延时的方式多次读入,结果一致再确认有效,提高了软件的可靠性。



5、正确选择接地点,完善接地系统。

良好的接地是保证PLC控制器可靠工作的重要条件,可以避免偶然发生的电压冲击危害,还可以抑制干扰。完善的接地系统是PLC控制器抗电磁干扰的重要措施之一。


PLC控制器属高速低电平控制装置,应采用直接接地方式。为了抑制加在电源及输入端、输出端的干扰,应给PLC控制器接上专用地线,接地点应与动力设备的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能靠近PLC控制器。集中布置的PLC控制器适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。分散布置的PLC控制器,应采用串联一点接地方式。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处,而且PLC控制器接地点必须与强电设备接地点相距10m以上。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。

信号源接地时,屏蔽层应在信号侧接地;信号源不接地时,应在PLC控制器侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,各屏蔽层应相互连接好。选择适当的接地处单点接地,要避免多点接地。



6、关于设备选型的问题。

4.3_.JPG


在选择设备时,首先要了解国产PLC生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等,要选择有较高抗干扰能力的产品,如采用浮地技术、隔离性能好的可编程控制器、人机界面HMI。

可编程控制器、人机界面现场应用时的抗干扰问题,是复杂而细致的。抗干扰性设计是一个十分复杂的系统性工程,涉及到具体的输入输出设备和工业现场的具体环境,要求我们要综合考虑各方面的因素,必须根据现场的实际情况,从减少干扰源、切断干扰途径等方面进行全面的考虑,充分利用各种抗干扰措施来进行可编程控制器、人机界面的设计。才能真正提高可编程控制器、人机界面HMI现场应用时的抗干扰能力,确保系统安全稳定运行。




  • 来源:工控论坛
  • 智造家提供

673 浏览

注塑模热流道系统常见故障的分析及对策

设备硬件类 我是谁 2016-10-11 19:43 发表了文章 来自相关话题

与普通流道模具相比,热流道模具有省时省料、效率高、质量稳定等显著优点,但曾一度因在使用上易产生故障而影响其广泛应用。随着模具工业的技术进步,热流道模塑在流道熔体温度控制、结构可靠性及热流道元件设计制造等方面都有了长足的进步,这使得热流道技术重新得到人们的重视和青睐。




 一、浇口处残留物突出或流涎滴料及表面外观差


1. 主要原因

浇口结构选择不合理,温度控制不当,注射后流道内熔体存在较大的残留压力。


2. 解决对策

1)浇口结构的改进。通常,浇口的长度过长,会在塑件表面留下较长的浇口料把,而浇口直径过大,则易导致流涎滴料现象的发生。当出现上述故障时,可重点考虑改变浇口结构。热流道常见的浇口形式有直浇口、点浇口和阀浇口。

2)温度的合理控制。若浇口区冷却水量不够,则会引起热量集中,造成流涎、滴料和拉丝现象,因此,出现上述现象时应加强该区的冷却。

3)树脂释压。流道内的残留压力过大是造成流涎的主要原因之一。一般情况下,注射机应采取缓冲回路或缓冲装置来防止流涎。




二、材料变色、焦料或降解


1. 主要原因

温度控制不当;流道或浇口尺寸过小引起较大剪切生热;流道内的死点导致滞留料受热时间过长。


2. 解决对策

1)温度的准确控制。为了能准确迅速地测定温度波动,要使热电偶测温头可靠地接触流道板或喷嘴壁,并使其位于每个独立温控区的中心位置,头部感温点与流道壁距离应不大于10mm为宜,应尽量使加热元件在流道两侧均布。

(2)修正浇口尺寸。应尽量避免流道死点,在许可范围内适当增大浇口直径,防止过甚的剪切生热。内热式喷嘴的熔体在流道径向温差大,更易发生焦料、降解现象,因此要注意流道径向尺寸设计不宜过大。




三、注射量短缺或无料射出


1. 主要原因

流道内出现障碍物或死角;浇口堵塞;流道内出现较厚的冷凝层。


2. 解决对策

1)流道设计和加工时,应保证熔体流向拐弯处壁面的圆弧过渡,使整个流道平滑而不存在流动死角。

2)在不影响塑件质量情况下,适当提高料温,避免浇口过早凝结。

3)适当增加热流道温度,以减小内热式喷嘴的冷凝层厚度,降低压力损失,从而利于充满型腔。




四、漏料严重


1. 主要原因

密封元件损坏;加热元件烧毁引起流道板膨胀不均;喷嘴与浇口套中心错位,或者止漏环决定的熔体绝缘层在喷嘴上的投影面积过大,导致喷嘴后退。


2. 解决对策

1)检查密封元件、加热元件有无损坏。若有损坏,在更换前仔细检查是元件质量问题、结构问题,还是正常使用寿命所导致的结果。

2)选择适当的止漏方式。根据喷嘴的绝热方式,防止漏料可采用止漏环或喷嘴接触两种结构。应注意使止漏接触部位保持可靠的接触状态。




五、热流道不能正常升温或升温时间过长


1. 主要原因

导线通道间距不够,导致导线折断;装配模具时导线相交发生短路、漏电等现象。


2. 解决对策

选择正确的加工和安装工艺,保证能安放全部导线,并按规定使用高温绝缘材料,定期检测导线破损情况。




六、换料或换色不良


1. 主要原因

换料或换色的方法不当;流道设计或加工不合理导致内部存在较多的滞留料。


2. 解决对策

1)改进流道的结构设计和加工方式。设计流道时,应尽量避免流道死点,各转角处应力求圆弧过渡。在许可范围内,流道尺寸尽量小一些,这样流道内滞留料少、新料流速较大,有利于快速清洗干净。加工流道时,不论流道多长,必须从一端进行加工,如果从两端同时加工,易造成孔中心的不重合,由此必然会形成滞留料部位。一般外加热喷嘴由于加热装置不影响熔体流动,可以较容易地清洗流道,而内加热喷嘴易在流道外壁形成冷凝层,故不利于快速换料。

2)选择正确的换料方法。热流道系统换料、换色过程一般由新料直接推出流道内的所有滞留料,再把流道壁面滞留料向前整体移动,因此,清洗比较容易进行。相反,若新料粘度较低,就容易进入滞留料中心,逐层分离滞留料,清洗起来就较为麻烦。倘若新旧两种料的粘度相近时,可通过加快新料注射速度来实现快速换料。若滞留料粘度对温度较为敏感,可适当提高料温来降低粘度,以加快换料过程。
 
 
 
 
 
文章来源于微信公众号智造家提供
  查看全部
与普通流道模具相比,热流道模具有省时省料、效率高、质量稳定等显著优点,但曾一度因在使用上易产生故障而影响其广泛应用。随着模具工业的技术进步,热流道模塑在流道熔体温度控制、结构可靠性及热流道元件设计制造等方面都有了长足的进步,这使得热流道技术重新得到人们的重视和青睐。
1.1_.PNG

 一、浇口处残留物突出或流涎滴料及表面外观差


1. 主要原因

浇口结构选择不合理,温度控制不当,注射后流道内熔体存在较大的残留压力。


2. 解决对策

1)浇口结构的改进。通常,浇口的长度过长,会在塑件表面留下较长的浇口料把,而浇口直径过大,则易导致流涎滴料现象的发生。当出现上述故障时,可重点考虑改变浇口结构。热流道常见的浇口形式有直浇口、点浇口和阀浇口。

2)温度的合理控制。若浇口区冷却水量不够,则会引起热量集中,造成流涎、滴料和拉丝现象,因此,出现上述现象时应加强该区的冷却。

3)树脂释压。流道内的残留压力过大是造成流涎的主要原因之一。一般情况下,注射机应采取缓冲回路或缓冲装置来防止流涎。




二、材料变色、焦料或降解


1. 主要原因


温度控制不当;流道或浇口尺寸过小引起较大剪切生热;流道内的死点导致滞留料受热时间过长。


2. 解决对策

1)温度的准确控制。为了能准确迅速地测定温度波动,要使热电偶测温头可靠地接触流道板或喷嘴壁,并使其位于每个独立温控区的中心位置,头部感温点与流道壁距离应不大于10mm为宜,应尽量使加热元件在流道两侧均布。

(2)修正浇口尺寸。应尽量避免流道死点,在许可范围内适当增大浇口直径,防止过甚的剪切生热。内热式喷嘴的熔体在流道径向温差大,更易发生焦料、降解现象,因此要注意流道径向尺寸设计不宜过大。




三、注射量短缺或无料射出


1. 主要原因

流道内出现障碍物或死角;浇口堵塞;流道内出现较厚的冷凝层。


2. 解决对策

1)流道设计和加工时,应保证熔体流向拐弯处壁面的圆弧过渡,使整个流道平滑而不存在流动死角。

2)在不影响塑件质量情况下,适当提高料温,避免浇口过早凝结。

3)适当增加热流道温度,以减小内热式喷嘴的冷凝层厚度,降低压力损失,从而利于充满型腔。




四、漏料严重


1. 主要原因


密封元件损坏;加热元件烧毁引起流道板膨胀不均;喷嘴与浇口套中心错位,或者止漏环决定的熔体绝缘层在喷嘴上的投影面积过大,导致喷嘴后退。


2. 解决对策

1)检查密封元件、加热元件有无损坏。若有损坏,在更换前仔细检查是元件质量问题、结构问题,还是正常使用寿命所导致的结果。

2)选择适当的止漏方式。根据喷嘴的绝热方式,防止漏料可采用止漏环或喷嘴接触两种结构。应注意使止漏接触部位保持可靠的接触状态。




五、热流道不能正常升温或升温时间过长


1. 主要原因


导线通道间距不够,导致导线折断;装配模具时导线相交发生短路、漏电等现象。


2. 解决对策

选择正确的加工和安装工艺,保证能安放全部导线,并按规定使用高温绝缘材料,定期检测导线破损情况。




六、换料或换色不良


1. 主要原因


换料或换色的方法不当;流道设计或加工不合理导致内部存在较多的滞留料。


2. 解决对策

1)改进流道的结构设计和加工方式。设计流道时,应尽量避免流道死点,各转角处应力求圆弧过渡。在许可范围内,流道尺寸尽量小一些,这样流道内滞留料少、新料流速较大,有利于快速清洗干净。加工流道时,不论流道多长,必须从一端进行加工,如果从两端同时加工,易造成孔中心的不重合,由此必然会形成滞留料部位。一般外加热喷嘴由于加热装置不影响熔体流动,可以较容易地清洗流道,而内加热喷嘴易在流道外壁形成冷凝层,故不利于快速换料。

2)选择正确的换料方法。热流道系统换料、换色过程一般由新料直接推出流道内的所有滞留料,再把流道壁面滞留料向前整体移动,因此,清洗比较容易进行。相反,若新料粘度较低,就容易进入滞留料中心,逐层分离滞留料,清洗起来就较为麻烦。倘若新旧两种料的粘度相近时,可通过加快新料注射速度来实现快速换料。若滞留料粘度对温度较为敏感,可适当提高料温来降低粘度,以加快换料过程。
 
 
 
 
 
  • 文章来源于微信公众号
  • 智造家提供

 
707 浏览

PLC的6大基本应用

设备硬件类 小螺号 2016-10-11 15:19 发表了文章 来自相关话题

最初,PLC主要用于开关量的逻辑控制。随着PLC技术的进步,它的应用领域不断扩大。如今,PLC不仅用于开关量控制,还用于模拟量及数字量的控制,可采集与存储数据,还可对控制系统进行监控;还可联网、通讯,实现大范围、跨地域的控制与管理。PLC已日益成为工业控制装置家族中一个重要的角色。



1、用于开关量控制






PLC控制开关量的能力是很强的。所控制的入出点数,少的十几点、几十点,多的可到几百、几千,甚至几万点。由于它能联网,点数几乎不受限制,不管多少点都能控制。

所控制的逻辑问题可以是多种多样的:组合的、时序的;即时的、延时的;不需计数的,需要计数的;固定顺序的,随机工作的;等等,都可进行。

PLC的硬件结构是可变的,软件程序是可编的,用于控制时,非常灵活。必要时,可编写多套,或多组程序,依需要调用。它很适应于工业现场多工况、多状态变换的需要。

用PLC进行开关量控制实例是很多的,冶金、机械、轻工、化工、纺织等等,几乎所有工业行业都需要用到它。目前,PLC首用的目标,也是别的控制器无法与其比拟的,就是它能方便并可靠地用于开关量的控制。




2、用于模拟量控制





[login]
模拟量,如电流、电压、温度、压力等等,它的大小是连续变化的。工业生产,特别是连续型生产过程,常要对这些物理量进行控制。

作为一种工业控制电子装置,PLC若不能对这些量进行控制,那是一大不足。为此,各PLC厂家都在这方面进行大量的开发。目前,不仅大型、中型机可以进行模拟量控制,就是小型机,也能进行这样的控制。

PLC进行模拟量控制,要配置有模拟量与数字量相互转换的A/D、D/A单元。它也是I/O单元,不过是特殊的I/O单元。

A/D单元是把外电路的模拟量,转换成数字量,然后送入PLC。D/A单元,是把PLC的数字量转换成模拟量,再送给外电路。

作为一种特殊的I/O单元,它仍具有I/O电路抗干扰、内外电路隔离,与输入输出继电器(或内部继电器,它也是PLC工作内存的一个区。可读写)交换信息等等特点。

这里的A/D中的A,多为电流,或电压,也有为温度。D/A中的A,多为电压,或电流。电压、电流变化范围多为0~5V,0~10V,4~20mA。有的还可处理正负值的。

这里的D,小型机多为8位二进制数,中、大型多为12位二进制数。

A/D、D/A有单路,也有多路。多路占的输入输出继电器多。

有了A/D、D/A单元,余下的处理都是数字量,这对有信息处理能力的PLC并不难。中、大型PLC处理能力更强,不仅可进行数字的加、减、乘、除,还可开方,插值,还可进行浮点运算。有的还有PID指令,可对偏差制量进行比例、微分、积分运算,进而产生相应的输出。计算机能算的它几乎都能算。

这样,用PLC实现模拟量控制是完全可能的。控制的单位值可小到212分之一的测量程值,多数也是足够的。

PLC进行模拟量控制,还有A/D、D/A组合在一起的单元,并可用PID或模糊控制算法实现控制,可得到很高的控制质量。

用PLC进行模拟量控制的好处是,在进行模拟量控制的同时,开关量也可控制。这个优点是别的控制器所不具备的,或控制的实现不如PLC方便。

当然,若纯为模拟量的系统,用PLC可能在性能价格比上不如用调节器。这也是应当看到的。



3、用于运动控制






实际的物理量,除了开关量、模拟量,还有运动控制。如机床部件的位移,常以数字量表示。

运动控制,有效的办法是NC,即数字控制技术。这是50年代诞生于美国的基于计算机的控制技术。当今已很普及,并也很完善。目前,先进国家的金属切削机床,数控化的比率已超过40%~80%,有的甚至更高。

PLC也是基于计算机的技术,并日益完善。故它也完全可以用于数字量控制。

PLC可接收计数脉冲,频率可高达几k到几十k赫兹。可用多种方式接收这脉冲,还可多路接收。有的PLC还有脉冲输出功能,脉冲频率也可达几十k。有了这两种功能,加上PLC有数据处理及运算能力,若再配备相应的传感器(如旋转编码器)或脉冲伺服装置(如环形分配器、功放、步进电机),则完全可以依NC的原理实现种种控制。

高、中档的PLC,还开发有NC单元,或运动单元,可实现点位控制。运动单元还可实现曲线插补,可控制曲线运动。所以,若PLC配置了这种单元,则完全可以用NC的办法,进行数字量的控制。

新开发的运动单元,甚至还发行了NC技术的编程语言,为更好地用PLC进行数字控制提供了方便。



4、用于数据采集

随着PLC技术的发展,其数据存储区越来越大。如德维森公司的PLC,其数据存储区(DM区)可达到9999个字。这样庞大的数据存储区,可以存储大量数据。

数据采集可以用计数器,累计记录采集到的脉冲数,并定时地转存到DM区中去。

数据采集也可用A/D单元,当模拟量转换成数字量后,再定时地转存到DM区中去。

PLC还可配置上小型打印机,定期把DM区的数据打出来。

PLC也可与计算机通讯,由计算机把DM区的数据读出,并由计算机再对这些数据作处理。这时,PLC即成为计算机的数据终端。

电力用户曾使用PLC,用以实时记录用户用电情况,以实现不同用电时间、不同计价的收费办法,鼓励用户在用电低谷时多用电,达到合理用电与节约用电的目的。



5、用于信号监控

PLC自检信号很多,内部器件也很多,多数使用者未充分发挥其作用。


其实,完全可利用它进行PLC自身工作的监控,或对控制对象进行监控。

这里介绍一种用PLC定时器作看门狗,对控制对象工作情况进行监控的思路。

如用PLC控制某运动部件动作,看施加控制后动作进行了没有,可用看门狗办法实现监控。具体作法是在施加控制的同时,令看门狗定时器计时。如在规定的时间内动作完成,即定时器未超过警戒值的情况下,已收到动作完成信号,则说明控制对象工作正常,无需报警。

若超时,说明不正常,可作相应处理。

如果控制对象的各重要控制环节,都用这样一些看门狗“看”着,那系统的工作将了如指掌,出现了问题,卡在什么环节上也很好查找。

还有其它一些监控工作可做。对一个复杂的控制系统,特别是自动控制系统,监控以至进一步能自诊断是非常必要的。它可减少系统的故障,出了故障也好查找,可提高累计平均无故障运行时间,降低故障修复时间,提高系统的可靠性。



6、用于联网、通讯

PLC联网、通讯能力很强,不断有新的联网的结构推出。


PLC可与个人计算机相连接进行通讯,可用计算机参与编程及对PLC进行控制的管理,使PLC用起来更方便。


为了充分发挥计算机的作用,可实行一台计算机控制与管理多台PLC,多的可达32台。也可一台PLC与两台或更多的计算机通讯,交换信息,以实现多地对PLC控制系统的监控。


PLC与PLC也可通讯。可一对一PLC通讯。可几个PLC通讯。可多到几十、几百。


PLC与智能仪表、智能执行装置(如变频器),也可联网通讯,交换数据,相互操作。


可联接成远程控制系统,系统范围面可大到10公里或更大。



可组成局部网,不仅PLC,而且高档计算机、各种智能装置也都可进网。可用总线网,也可用环形网。网还可套网。网与网还可桥接。联网可把成千上万的PLC、计算机、智能装置组织在一个网中。


网间的结点可直接或间接地通讯、交换信息。



联网、通讯,正适应了当今计算机集成制造系统(CIMS)及智能化工厂发展的需要。它可使工业控制从点(Point)、到线((Line)再到面(Aero),使设备级的控制、生产线的控制、工厂管理层的控制连成一个整体,进而可创造更高的效益。这个无限美好的前景,已越来越清楚地展现在我们这一代人的面前。



以上几点应用是着重从质上讲的。从量上讲,PLC有大、有小。所以,它的控制范围也可大、可小。小的只控制一个设备,甚至一个部件,一个站点;大的可控制多台设备,一条生产线,以至于整个工厂。可以说,工业控制的大小场合,都离不开PLC。



一般讲,工业生产过程可分为两种类型;连续型生产过程(如化学工业)及非连续型,即离散型生产过程(如机械制造业)。前者生产对象是连续的,分不出件的;后者为离散的,一件件的。由于PLC有上述几个方面的应用,而且,控制的规模又可大、可小,所以,这两种类型的生产过程都有其用武之地。



事实上,PLC已广泛应用于工业生产的各个领域。从行业看,冶金、机械、化工、轻工、食品、建材等等,几乎没有不用到它的。不仅工业生产用它,一些非工业过程,如楼宇自动化、电梯控制也用到它。农业的大棚环境参数调控,水利灌溉也用到它。


PLC能有上述几个范围广泛的应用,是PLC自身特点决定的,也是PLC技术不断完善的结果。
[/login] 
 
 
 
来源网络智造家提供 查看全部
最初,PLC主要用于开关量的逻辑控制。随着PLC技术的进步,它的应用领域不断扩大。如今,PLC不仅用于开关量控制,还用于模拟量及数字量的控制,可采集与存储数据,还可对控制系统进行监控;还可联网、通讯,实现大范围、跨地域的控制与管理。PLC已日益成为工业控制装置家族中一个重要的角色。



1、用于开关量控制

1.1_.JPG


PLC控制开关量的能力是很强的。所控制的入出点数,少的十几点、几十点,多的可到几百、几千,甚至几万点。由于它能联网,点数几乎不受限制,不管多少点都能控制。

所控制的逻辑问题可以是多种多样的:组合的、时序的;即时的、延时的;不需计数的,需要计数的;固定顺序的,随机工作的;等等,都可进行。

PLC的硬件结构是可变的,软件程序是可编的,用于控制时,非常灵活。必要时,可编写多套,或多组程序,依需要调用。它很适应于工业现场多工况、多状态变换的需要。

用PLC进行开关量控制实例是很多的,冶金、机械、轻工、化工、纺织等等,几乎所有工业行业都需要用到它。目前,PLC首用的目标,也是别的控制器无法与其比拟的,就是它能方便并可靠地用于开关量的控制。




2、用于模拟量控制

1.2_.JPG

[login]
模拟量,如电流、电压、温度、压力等等,它的大小是连续变化的。工业生产,特别是连续型生产过程,常要对这些物理量进行控制。

作为一种工业控制电子装置,PLC若不能对这些量进行控制,那是一大不足。为此,各PLC厂家都在这方面进行大量的开发。目前,不仅大型、中型机可以进行模拟量控制,就是小型机,也能进行这样的控制。

PLC进行模拟量控制,要配置有模拟量与数字量相互转换的A/D、D/A单元。它也是I/O单元,不过是特殊的I/O单元。

A/D单元是把外电路的模拟量,转换成数字量,然后送入PLC。D/A单元,是把PLC的数字量转换成模拟量,再送给外电路。

作为一种特殊的I/O单元,它仍具有I/O电路抗干扰、内外电路隔离,与输入输出继电器(或内部继电器,它也是PLC工作内存的一个区。可读写)交换信息等等特点。

这里的A/D中的A,多为电流,或电压,也有为温度。D/A中的A,多为电压,或电流。电压、电流变化范围多为0~5V,0~10V,4~20mA。有的还可处理正负值的。

这里的D,小型机多为8位二进制数,中、大型多为12位二进制数。

A/D、D/A有单路,也有多路。多路占的输入输出继电器多。

有了A/D、D/A单元,余下的处理都是数字量,这对有信息处理能力的PLC并不难。中、大型PLC处理能力更强,不仅可进行数字的加、减、乘、除,还可开方,插值,还可进行浮点运算。有的还有PID指令,可对偏差制量进行比例、微分、积分运算,进而产生相应的输出。计算机能算的它几乎都能算。

这样,用PLC实现模拟量控制是完全可能的。控制的单位值可小到212分之一的测量程值,多数也是足够的。

PLC进行模拟量控制,还有A/D、D/A组合在一起的单元,并可用PID或模糊控制算法实现控制,可得到很高的控制质量。

用PLC进行模拟量控制的好处是,在进行模拟量控制的同时,开关量也可控制。这个优点是别的控制器所不具备的,或控制的实现不如PLC方便。

当然,若纯为模拟量的系统,用PLC可能在性能价格比上不如用调节器。这也是应当看到的。



3、用于运动控制

1.3_.JPG


实际的物理量,除了开关量、模拟量,还有运动控制。如机床部件的位移,常以数字量表示。

运动控制,有效的办法是NC,即数字控制技术。这是50年代诞生于美国的基于计算机的控制技术。当今已很普及,并也很完善。目前,先进国家的金属切削机床,数控化的比率已超过40%~80%,有的甚至更高。

PLC也是基于计算机的技术,并日益完善。故它也完全可以用于数字量控制。

PLC可接收计数脉冲,频率可高达几k到几十k赫兹。可用多种方式接收这脉冲,还可多路接收。有的PLC还有脉冲输出功能,脉冲频率也可达几十k。有了这两种功能,加上PLC有数据处理及运算能力,若再配备相应的传感器(如旋转编码器)或脉冲伺服装置(如环形分配器、功放、步进电机),则完全可以依NC的原理实现种种控制。

高、中档的PLC,还开发有NC单元,或运动单元,可实现点位控制。运动单元还可实现曲线插补,可控制曲线运动。所以,若PLC配置了这种单元,则完全可以用NC的办法,进行数字量的控制。

新开发的运动单元,甚至还发行了NC技术的编程语言,为更好地用PLC进行数字控制提供了方便。



4、用于数据采集

随着PLC技术的发展,其数据存储区越来越大。如德维森公司的PLC,其数据存储区(DM区)可达到9999个字。这样庞大的数据存储区,可以存储大量数据。

数据采集可以用计数器,累计记录采集到的脉冲数,并定时地转存到DM区中去。

数据采集也可用A/D单元,当模拟量转换成数字量后,再定时地转存到DM区中去。

PLC还可配置上小型打印机,定期把DM区的数据打出来。

PLC也可与计算机通讯,由计算机把DM区的数据读出,并由计算机再对这些数据作处理。这时,PLC即成为计算机的数据终端。

电力用户曾使用PLC,用以实时记录用户用电情况,以实现不同用电时间、不同计价的收费办法,鼓励用户在用电低谷时多用电,达到合理用电与节约用电的目的。



5、用于信号监控

PLC自检信号很多,内部器件也很多,多数使用者未充分发挥其作用。


其实,完全可利用它进行PLC自身工作的监控,或对控制对象进行监控。

这里介绍一种用PLC定时器作看门狗,对控制对象工作情况进行监控的思路。

如用PLC控制某运动部件动作,看施加控制后动作进行了没有,可用看门狗办法实现监控。具体作法是在施加控制的同时,令看门狗定时器计时。如在规定的时间内动作完成,即定时器未超过警戒值的情况下,已收到动作完成信号,则说明控制对象工作正常,无需报警。

若超时,说明不正常,可作相应处理。

如果控制对象的各重要控制环节,都用这样一些看门狗“看”着,那系统的工作将了如指掌,出现了问题,卡在什么环节上也很好查找。

还有其它一些监控工作可做。对一个复杂的控制系统,特别是自动控制系统,监控以至进一步能自诊断是非常必要的。它可减少系统的故障,出了故障也好查找,可提高累计平均无故障运行时间,降低故障修复时间,提高系统的可靠性。



6、用于联网、通讯

PLC联网、通讯能力很强,不断有新的联网的结构推出。


PLC可与个人计算机相连接进行通讯,可用计算机参与编程及对PLC进行控制的管理,使PLC用起来更方便。


为了充分发挥计算机的作用,可实行一台计算机控制与管理多台PLC,多的可达32台。也可一台PLC与两台或更多的计算机通讯,交换信息,以实现多地对PLC控制系统的监控。


PLC与PLC也可通讯。可一对一PLC通讯。可几个PLC通讯。可多到几十、几百。


PLC与智能仪表、智能执行装置(如变频器),也可联网通讯,交换数据,相互操作。


可联接成远程控制系统,系统范围面可大到10公里或更大。



可组成局部网,不仅PLC,而且高档计算机、各种智能装置也都可进网。可用总线网,也可用环形网。网还可套网。网与网还可桥接。联网可把成千上万的PLC、计算机、智能装置组织在一个网中。


网间的结点可直接或间接地通讯、交换信息。



联网、通讯,正适应了当今计算机集成制造系统(CIMS)及智能化工厂发展的需要。它可使工业控制从点(Point)、到线((Line)再到面(Aero),使设备级的控制、生产线的控制、工厂管理层的控制连成一个整体,进而可创造更高的效益。这个无限美好的前景,已越来越清楚地展现在我们这一代人的面前。



以上几点应用是着重从质上讲的。从量上讲,PLC有大、有小。所以,它的控制范围也可大、可小。小的只控制一个设备,甚至一个部件,一个站点;大的可控制多台设备,一条生产线,以至于整个工厂。可以说,工业控制的大小场合,都离不开PLC。



一般讲,工业生产过程可分为两种类型;连续型生产过程(如化学工业)及非连续型,即离散型生产过程(如机械制造业)。前者生产对象是连续的,分不出件的;后者为离散的,一件件的。由于PLC有上述几个方面的应用,而且,控制的规模又可大、可小,所以,这两种类型的生产过程都有其用武之地。



事实上,PLC已广泛应用于工业生产的各个领域。从行业看,冶金、机械、化工、轻工、食品、建材等等,几乎没有不用到它的。不仅工业生产用它,一些非工业过程,如楼宇自动化、电梯控制也用到它。农业的大棚环境参数调控,水利灌溉也用到它。


PLC能有上述几个范围广泛的应用,是PLC自身特点决定的,也是PLC技术不断完善的结果。
[/login] 
 
 
 
  • 来源网络
  • 智造家提供

732 浏览

几种常见PLC的程序结构及其特点

智能制造类 我是谁 2016-10-09 14:54 发表了文章 来自相关话题

 
1、某些国外的小型PLC的程序结构

  这些PLC的用户程序由主程序、子程序和中断程序组成。在每一个扫描循环周期,CPU都要调用一次主程序。主程序可以调用子程序,小型控制系统可以只有主程序。中断程序用于快速响应中断事件。在中断事件发生时,CPU将停止执行当时正在处理的程序或任务,去执行用户编写的中断程序。执行完中断程序后,继续执行被暂停执行的程序或任务。它们的子程序和中断程序没有局部变量,子程序没有输入、输出参数。
 
  

2.西门子的S7-200的程序结构




  过程映像输入/输出(I/Q)、变量存储器V、内部存储器位M、定时器T、计数器C等属于全局变量。S7-200的程序组织单元(ProgramOrganizationalUnit,简称为POU)包括主程序、子程序和中断程序。每个POU均有自己的64字节局部变量,局部变量只能在它所在的POU中使用。与此相反,全局变量可以在各POU中使用。
 

  下面是子程序可以使用的局部变量:

1)TEMP(临时变量)是暂时保存在局部数据区中的变量。只有在执行该POU时,定义的临时变量才被使用,POU执行完后,不再保存临时变量的数值。

2)IN是由调用它的POU提供的输入参数。

3)OUT是返回给调用它的POU的输出参数(子程序的执行结果)。

4)IN_OUT是输入_输出参数,其初始值由调用它的POU传送给子程序,并用同一变量将子程序的执行结果返回给调用它的POU。

   主程序和中断程序的局部变量中只有临时变量TEMP。

   具有输入、输出参数和局部变量的子程序易于实现结构化编程,对于长期生产同类设备或生产线的厂家尤为有用。这些厂家的编程人员为设备的各组件或工艺功能编写了大量的通用的子程序。即使不知道子程序的内部代码,只要知道子程序的功能和输入、输出参数的意义,就可以通过程序之间的调用快速“组装”出满足不同用户要求的控制程序。就好像用数字集成电路芯片组成复杂的数字电路一样。

   子程序如果没有输入、输出参数,它和调用它的程序之间没有清晰的接口,很难实现结构化编程。

   子程序如果没有局部变量,它和调用它的程序之间只能通过全局变量来交换数据,子程序内部也只能使用全局变量。将子程序和中断程序移植到别的项目时,需要重新统一安排它们使用的全局变量,以保证不会出现地址冲突。当程序很复杂,子程序和中断程序很多时,这种重新分配地址的工作量非常大。

   如果子程序和中断程序有局部变量,并且它们内部只使用局部变量,不使用全局变量,因为与其他POU没有地址冲突,不需作任何改动,就可以将子程序移植到别的项目中去。
  
 

3.西门子的S7-300/400的程序结构




   S7-300/400将子程序分为功能(Function,或称为函数)和功能块(FunctionBlock)。

   S7-300/400的功能与S7-200的子程序基本上相同。它们均有输入、输出参数和临时变量,功能的局部数据中的返回值实际上属于输出参数。它们没有专用的存储区,功能执行结束后,不再保存临时变量中的数据。

   可以用全局变量来保存那些在功能执行结束后需要保存的数据,但是会影响到功能的可移植性。

   功能块是用户编写的有自己专用的存储区(即背景数据块)的程序块,功能块的输入、输出参数和静态变量存放在指定的背景数据块中,临时变量存储在局部数据堆栈中。每次调用功能块时,都要指定一个背景数据块。功能块执行完后,背景数据块中的数据不会丢失,但是不会保存局部数据堆栈中的数据。

   功能块采用了类似于C++的封装的概念,将程序和数据封装在一起,具有很好的可移植性。

   S7-300/400的共享数据块可供所有的逻辑块使用。
  
 

4.IEC61131-3的程序结构

  IEC61131-3是PLC的编程语言标准。IEC61131-3是世界上第一个,也是至今为止唯一的工业控制领域的编程语言标准。IEC
   61131-3有三种POU:程序、功能块和功能。

   功能是有多个输入参数和一个输出参数(返回值)的POU,返回值的名称与功能的名称相同,需要定义返回值的数据类型。调用具有相同输入值的功能总是返回相同的结果。功能可以调用其他功能,但是不能调用功能块或程序。功能可定义的局部变量有VAR和VAR_INPUT。

   功能块是有多个输入/输出参数和内部存储单元的POU,功能块的输出参数值与其内部存储单元的值有关。功能块可以调用其他功能块或功能,但是不能调用程序。

在调用功能块之前,必须在要调用功能块的POU中为每次调用声明功能块的实例,操作系统将为每次调用分配功能块专用的存储区(类似于S7-300/400的背景数据块)。功能因为没有内部存储区,调用时不需要实例化。

   程序的行为和用途类似于功能块,程序具有输入和输出参数,而且可以具有内部存储区。程序通常包含有对功能和功能块的调用。

   IEC61131-3定义了若干标准的功能和功能块。
  
 

5.S7-300/400与IEC61131-3程序结构的区别

1)S7-300/400的功能可以有多个输出参数,返回值也属于输出参数。IEC61131-3的功能只有一个返回值。

2)IEC61131-3的功能块用于保存局部变量的专用存储区是在声明功能块的实例时分配的,它对用户是不透明的,其他POU不能直接访问该存储区。
S7-300/400的功能块的局部变量(不包括临时变量)保存在它的背景数据块中。其他POU可以访问背景数据块中的变量。如果需要多次调用同一个功能块来控制同一类型的被控对象,每次调用都需要指定一个背景数据块,但是这些背景数据块中的变量又很少,这样在项目中就出现了大量的背景数据块。可以使用多重背景数据块来减少背景数据块的数量。但是需要增加一个用来管理多重背景的功能块。

3)S7-300/400的功能块的局部变量有临时变量和静态变量,IEC61131-3的功能块的内部变量Var相当于S7-300/400的静态变量。

4)S7-300/400将数据区划分为数据块来使用,数据块的大小与数据块中定义的变量的数据类型和变量的个数有关。IEC61131-3没有数据块的概念。
 
 
 
 
文章来源于 技成培训智造家平台提供 查看全部
 
1、某些国外的小型PLC的程序结构

  这些PLC的用户程序由主程序、子程序和中断程序组成。在每一个扫描循环周期,CPU都要调用一次主程序。主程序可以调用子程序,小型控制系统可以只有主程序。中断程序用于快速响应中断事件。在中断事件发生时,CPU将停止执行当时正在处理的程序或任务,去执行用户编写的中断程序。执行完中断程序后,继续执行被暂停执行的程序或任务。它们的子程序和中断程序没有局部变量,子程序没有输入、输出参数。
 
  

2.西门子的S7-200的程序结构
8.1_.JPG

  过程映像输入/输出(I/Q)、变量存储器V、内部存储器位M、定时器T、计数器C等属于全局变量。S7-200的程序组织单元(ProgramOrganizationalUnit,简称为POU)包括主程序、子程序和中断程序。每个POU均有自己的64字节局部变量,局部变量只能在它所在的POU中使用。与此相反,全局变量可以在各POU中使用。
 

  下面是子程序可以使用的局部变量:

1)TEMP(临时变量)是暂时保存在局部数据区中的变量。只有在执行该POU时,定义的临时变量才被使用,POU执行完后,不再保存临时变量的数值。

2)IN是由调用它的POU提供的输入参数。

3)OUT是返回给调用它的POU的输出参数(子程序的执行结果)。

4)IN_OUT是输入_输出参数,其初始值由调用它的POU传送给子程序,并用同一变量将子程序的执行结果返回给调用它的POU。

   主程序和中断程序的局部变量中只有临时变量TEMP。

   具有输入、输出参数和局部变量的子程序易于实现结构化编程,对于长期生产同类设备或生产线的厂家尤为有用。这些厂家的编程人员为设备的各组件或工艺功能编写了大量的通用的子程序。即使不知道子程序的内部代码,只要知道子程序的功能和输入、输出参数的意义,就可以通过程序之间的调用快速“组装”出满足不同用户要求的控制程序。就好像用数字集成电路芯片组成复杂的数字电路一样。

   子程序如果没有输入、输出参数,它和调用它的程序之间没有清晰的接口,很难实现结构化编程。

   子程序如果没有局部变量,它和调用它的程序之间只能通过全局变量来交换数据,子程序内部也只能使用全局变量。将子程序和中断程序移植到别的项目时,需要重新统一安排它们使用的全局变量,以保证不会出现地址冲突。当程序很复杂,子程序和中断程序很多时,这种重新分配地址的工作量非常大。

   如果子程序和中断程序有局部变量,并且它们内部只使用局部变量,不使用全局变量,因为与其他POU没有地址冲突,不需作任何改动,就可以将子程序移植到别的项目中去。
  
 

3.西门子的S7-300/400的程序结构
8.2_.JPG

   S7-300/400将子程序分为功能(Function,或称为函数)和功能块(FunctionBlock)。

   S7-300/400的功能与S7-200的子程序基本上相同。它们均有输入、输出参数和临时变量,功能的局部数据中的返回值实际上属于输出参数。它们没有专用的存储区,功能执行结束后,不再保存临时变量中的数据。

   可以用全局变量来保存那些在功能执行结束后需要保存的数据,但是会影响到功能的可移植性。

   功能块是用户编写的有自己专用的存储区(即背景数据块)的程序块,功能块的输入、输出参数和静态变量存放在指定的背景数据块中,临时变量存储在局部数据堆栈中。每次调用功能块时,都要指定一个背景数据块。功能块执行完后,背景数据块中的数据不会丢失,但是不会保存局部数据堆栈中的数据。

   功能块采用了类似于C++的封装的概念,将程序和数据封装在一起,具有很好的可移植性。

   S7-300/400的共享数据块可供所有的逻辑块使用。
  
 

4.IEC61131-3的程序结构

  IEC61131-3是PLC的编程语言标准。IEC61131-3是世界上第一个,也是至今为止唯一的工业控制领域的编程语言标准。IEC
   61131-3有三种POU:程序、功能块和功能。

   功能是有多个输入参数和一个输出参数(返回值)的POU,返回值的名称与功能的名称相同,需要定义返回值的数据类型。调用具有相同输入值的功能总是返回相同的结果。功能可以调用其他功能,但是不能调用功能块或程序。功能可定义的局部变量有VAR和VAR_INPUT。

   功能块是有多个输入/输出参数和内部存储单元的POU,功能块的输出参数值与其内部存储单元的值有关。功能块可以调用其他功能块或功能,但是不能调用程序。

在调用功能块之前,必须在要调用功能块的POU中为每次调用声明功能块的实例,操作系统将为每次调用分配功能块专用的存储区(类似于S7-300/400的背景数据块)。功能因为没有内部存储区,调用时不需要实例化。

   程序的行为和用途类似于功能块,程序具有输入和输出参数,而且可以具有内部存储区。程序通常包含有对功能和功能块的调用。

   IEC61131-3定义了若干标准的功能和功能块。
  
 

5.S7-300/400与IEC61131-3程序结构的区别

1)S7-300/400的功能可以有多个输出参数,返回值也属于输出参数。IEC61131-3的功能只有一个返回值。

2)IEC61131-3的功能块用于保存局部变量的专用存储区是在声明功能块的实例时分配的,它对用户是不透明的,其他POU不能直接访问该存储区。
S7-300/400的功能块的局部变量(不包括临时变量)保存在它的背景数据块中。其他POU可以访问背景数据块中的变量。如果需要多次调用同一个功能块来控制同一类型的被控对象,每次调用都需要指定一个背景数据块,但是这些背景数据块中的变量又很少,这样在项目中就出现了大量的背景数据块。可以使用多重背景数据块来减少背景数据块的数量。但是需要增加一个用来管理多重背景的功能块。


3)S7-300/400的功能块的局部变量有临时变量和静态变量,IEC61131-3的功能块的内部变量Var相当于S7-300/400的静态变量。

4)S7-300/400将数据区划分为数据块来使用,数据块的大小与数据块中定义的变量的数据类型和变量的个数有关。IEC61131-3没有数据块的概念。
 
 
 
 
  • 文章来源于 技成培训
  • 智造家平台提供

677 浏览

西门子触摸屏与PLC闭环控制的变频器使用

智能制造类 小螺号 2016-10-09 14:00 发表了文章 来自相关话题

摘要:本文介绍了基于西门子触摸屏与PLC闭环控制的变频器节能改造系统, 触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。


西门子触摸屏结合西门子PLC在闭环控制的变频节能系统中的应用是一种自动控制的趋势。触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。一般PLC结合触摸屏的闭环调节的变频节能系统如下图所示。






2、闭环控制的变频节能系统用途

闭环控制的变频节能系统用途很广,各种场合的变频节能系统的拖动方式及控制方式各有不同,具体应用时应根据实际情况选择设计。下面列举一些:
中央空调节能:冷冻泵、冷却泵、主机、却塔风机、风机盘管等。
恒压供水:水厂一、二级泵,供水管网增压泵、大厦供水水泵等
锅炉:引风机、送风机、给水泵等,变频节能系统的控制调节预处理信号由锅炉自动控制系统、DCS或多冲量控制系统给出。
汽轮机:循环泵、凝结泵等,其控制调节预处理信号由汽轮机自动控制系统及DCS给出。
纯水处理系统:软化水泵、增压泵等。
洁净室:增压风机、FFU群控等等。



3、整个闭环控制的变频节能系统的组成设备及其作用

(1) PLC选用SIEMENS公司的S7-200系列:由CPU224XP、DIDO模块、AIAO模块组成。PLC作为控制单元,是整个系统的控制核心。其主要的作用要体现以下几方面:
① 完成对系统各种数据的采集以及数字量与模拟量的相互转换。
② 完成对整个系统的逻辑控制及PID调节的运算。
③ 向触摸屏提供所采集及处理的数据,并执行触摸屏发出的各种指令。
④ 将PID运算的数据结果转换成模拟信号,作为调节变频器的输出频率的控制信号。
⑤ 通过通信电缆及USS4协议完成对变频器内部参数读写及控制。

(2) 触摸屏采用SIEMENS公司MP370: 其主要作用如下
① 可实时显示设备和系统的运行状态。
② 通过触摸向PLC发出指令和数据,再通过PLC完成对系统或设备的控制。
③ 可做成多幅多种监控画面,替代了传统的电气操作盘及显示记录仪表等,且功能更加强大。

(3) 变频器:采用SIEMENS公司440系列,通过USS4协议可由触摸屏通过PLC设置其内部的部分参数,根据PLC发送过来的数据(模拟量)值调节水泵或风机的转速,并将其内部运行参数反馈到PLC。

(4) 压力、温度等传感器:将被控制系统(水系统或风系统)的实际参数值转变成电信号上传至PLC。

(5) 电气元件:给PLC、触摸屏、变频器及传感器等供电,完成各种操作及驱动等。



4、触摸屏画面设计
触摸屏画面由ProTool等专用软件进行设计,然后先通过编程电脑调试,合格后再下载到触摸屏。触摸屏画面总数应在其存储空间允许的范围内,各画面之间尽量做到可相互及强制切换。

(1)主画面的设计
一般的,可用欢迎画面或被控系统的主系统画面作为主画面,该画面可进入到各分画面。各分画面均能一步返回主画面。若是将被控主系统画面作为主画面,则应在画面中显示被控系统的一些住要参数,以便在此画面上对整个被控系统有大致的了结。

(2)控制画面的设计
该种画面主要用来控制被控设备的启停及显示变频器内部的参数,也可将变频器参数的设定做在其中。该种画面的数量在触摸屏画面中占的最多,其具体画面数量由实际被控设备决定。

(3)参数设置页面的设计
该画面主要是对变频器的内部参数进行设定,同时还应显示参数设定完成的情况,实际制做时还应考虑加密的问题。

(4)实时趋势页面的设计
该画面住要是以曲线记录的形式来显示被控值、变频器的主要工作参数(如输出频率)等的实时状态。

(5)信息记录页面的设计
该画面主要是记录可能出现的设备损坏、过载、数值超范围和系统急停等故障。另外该画面还可记录各设备启停操作,作为凭证。

(6)节能画面的设计
该画面主要是记录和显示变频器的累积用电数及实时节电状态,以便向用户展示变频节能的好处,也可用来与其它的节电测量作比较。



5、PLC程序设计
PLC程序由S7-200专用编程软件进行设计,然后通过编程电脑下载到PLC进行联机调试,合格后即可使用。PLC在编程前应先对各功能程序段的地址进行规划,以免重复使用同一地址,造成误动。
(1)逻辑功能的设计
这部分程序主要是完成各变频器、水泵(或风机)的启动停止、联动、联锁及自动投切等等功能,一般在离线状态下就能完成软件逻辑功能的测试。

(2)PID功能的设计
通过S7-200中的PID向导可完成PID调节程序,具体应用时需根据实际被控设备及采样设备决定其配置。

(3)采样程序的设计
采样元件使用标准配置时,应注意采样AD转换后的具体数据是否与PID及显示等程序配套,实际制做时还应考虑采样是多路且相关联的情况。

(4)PLC与变频器通信程序的设计
SIEMENS S7-200PLC与SIEMENS 430等变频器的通信一般使用USS4协议程序来完成,该程序的主要目的是监控变频器的实时运行状态。

(5)其它辅助程序的设计
PLC程序在实际编程过程中,需考虑对一些程序进行修补,尽量减少程序漏洞,反复推敲,不断的总结完善。



结束语

在闭环控制的变频节能系统中采用触摸屏可以使用户简单直观监控整个中央空调变频节能系统及与其相关联的设备和系统,提高了整个被控系统以及企业的自动化程度和硬件档次。



来源:工控网智造家品台提供 查看全部
摘要:本文介绍了基于西门子触摸屏与PLC闭环控制的变频器节能改造系统, 触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。


西门子触摸屏结合西门子PLC在闭环控制的变频节能系统中的应用是一种自动控制的趋势。触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。一般PLC结合触摸屏的闭环调节的变频节能系统如下图所示。
5.1_.JPG



2、闭环控制的变频节能系统用途

闭环控制的变频节能系统用途很广,各种场合的变频节能系统的拖动方式及控制方式各有不同,具体应用时应根据实际情况选择设计。下面列举一些:
中央空调节能:冷冻泵、冷却泵、主机、却塔风机、风机盘管等。
恒压供水:水厂一、二级泵,供水管网增压泵、大厦供水水泵等
锅炉:引风机、送风机、给水泵等,变频节能系统的控制调节预处理信号由锅炉自动控制系统、DCS或多冲量控制系统给出。
汽轮机:循环泵、凝结泵等,其控制调节预处理信号由汽轮机自动控制系统及DCS给出。
纯水处理系统:软化水泵、增压泵等。
洁净室:增压风机、FFU群控等等。



3、整个闭环控制的变频节能系统的组成设备及其作用

(1) PLC选用SIEMENS公司的S7-200系列:由CPU224XP、DIDO模块、AIAO模块组成。PLC作为控制单元,是整个系统的控制核心。其主要的作用要体现以下几方面:
① 完成对系统各种数据的采集以及数字量与模拟量的相互转换。
② 完成对整个系统的逻辑控制及PID调节的运算。
③ 向触摸屏提供所采集及处理的数据,并执行触摸屏发出的各种指令。
④ 将PID运算的数据结果转换成模拟信号,作为调节变频器的输出频率的控制信号。
⑤ 通过通信电缆及USS4协议完成对变频器内部参数读写及控制。

(2) 触摸屏采用SIEMENS公司MP370: 其主要作用如下
① 可实时显示设备和系统的运行状态。
② 通过触摸向PLC发出指令和数据,再通过PLC完成对系统或设备的控制。
③ 可做成多幅多种监控画面,替代了传统的电气操作盘及显示记录仪表等,且功能更加强大。

(3) 变频器:采用SIEMENS公司440系列,通过USS4协议可由触摸屏通过PLC设置其内部的部分参数,根据PLC发送过来的数据(模拟量)值调节水泵或风机的转速,并将其内部运行参数反馈到PLC。

(4) 压力、温度等传感器:将被控制系统(水系统或风系统)的实际参数值转变成电信号上传至PLC。

(5) 电气元件:给PLC、触摸屏、变频器及传感器等供电,完成各种操作及驱动等。



4、触摸屏画面设计
触摸屏画面由ProTool等专用软件进行设计,然后先通过编程电脑调试,合格后再下载到触摸屏。触摸屏画面总数应在其存储空间允许的范围内,各画面之间尽量做到可相互及强制切换。

(1)主画面的设计
一般的,可用欢迎画面或被控系统的主系统画面作为主画面,该画面可进入到各分画面。各分画面均能一步返回主画面。若是将被控主系统画面作为主画面,则应在画面中显示被控系统的一些住要参数,以便在此画面上对整个被控系统有大致的了结。

(2)控制画面的设计
该种画面主要用来控制被控设备的启停及显示变频器内部的参数,也可将变频器参数的设定做在其中。该种画面的数量在触摸屏画面中占的最多,其具体画面数量由实际被控设备决定。

(3)参数设置页面的设计
该画面主要是对变频器的内部参数进行设定,同时还应显示参数设定完成的情况,实际制做时还应考虑加密的问题。

(4)实时趋势页面的设计
该画面住要是以曲线记录的形式来显示被控值、变频器的主要工作参数(如输出频率)等的实时状态。

(5)信息记录页面的设计
该画面主要是记录可能出现的设备损坏、过载、数值超范围和系统急停等故障。另外该画面还可记录各设备启停操作,作为凭证。

(6)节能画面的设计
该画面主要是记录和显示变频器的累积用电数及实时节电状态,以便向用户展示变频节能的好处,也可用来与其它的节电测量作比较。



5、PLC程序设计
PLC程序由S7-200专用编程软件进行设计,然后通过编程电脑下载到PLC进行联机调试,合格后即可使用。PLC在编程前应先对各功能程序段的地址进行规划,以免重复使用同一地址,造成误动。
(1)逻辑功能的设计
这部分程序主要是完成各变频器、水泵(或风机)的启动停止、联动、联锁及自动投切等等功能,一般在离线状态下就能完成软件逻辑功能的测试。

(2)PID功能的设计
通过S7-200中的PID向导可完成PID调节程序,具体应用时需根据实际被控设备及采样设备决定其配置。

(3)采样程序的设计
采样元件使用标准配置时,应注意采样AD转换后的具体数据是否与PID及显示等程序配套,实际制做时还应考虑采样是多路且相关联的情况。

(4)PLC与变频器通信程序的设计
SIEMENS S7-200PLC与SIEMENS 430等变频器的通信一般使用USS4协议程序来完成,该程序的主要目的是监控变频器的实时运行状态。

(5)其它辅助程序的设计
PLC程序在实际编程过程中,需考虑对一些程序进行修补,尽量减少程序漏洞,反复推敲,不断的总结完善。



结束语

在闭环控制的变频节能系统中采用触摸屏可以使用户简单直观监控整个中央空调变频节能系统及与其相关联的设备和系统,提高了整个被控系统以及企业的自动化程度和硬件档次。



  • 来源:工控网
  • 智造家品台提供