本月累计签到次数:

今天获取 积分

PCB设计

PCB设计

425 浏览

在PCB设计中,射频电路和数字电路如何和谐共处?

设备硬件类 朱迪 2017-03-23 13:08 发表了文章 来自相关话题

单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。





1、数字电路与模拟电路的潜在矛盾

如果模拟电路(射频) 和数字电路(微控制器) 单独工作可能各自工作良好,但是一旦将两者放在同一块电路板上,使用同一个电源供电一起工作,整个系统很可能就会不稳定。这主要是因为数字信号频繁的在地和正电源(大小3 V) 之间摆动,而且周期特别短,常常是ns 级的。由于较大的振幅和较小的切换时间,使得这些数字信号包含大量的且独立于切换频率的高频成分。而在模拟部分,从天线调谐回路传到无线设备接收部分的信号一般小于1μV。因此数字信号与射频信号之间的差别将达到10-6(120 dB) 。显然,如果数字信号与射频信号不能很好的分离,微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。

2 、RF电路和数字电路做在同一PCB上的常见问题

不能充分的隔离敏感线路和噪声信号线是常常出现的问题。如上所述,数字信号具有高的摆幅并包含大量高频谐波。如果PCB 板上的数字信号布线邻近敏感的模拟信号,高频谐波可能会耦合过去。RF 器件的最敏感节点通常为锁相环( PLL) 的环路滤波电路,外接的压控振荡器(VCO) 电感,晶振基准信号和天线端子,电路的这些部分应该特别仔细处理。

(1) 供电电源噪声
由于输入/ 输出信号有几V 的摆幅,数字电路对于电源噪声(小于50 mV) 一般可以接受。而模拟电路对于电源噪声却相当敏感,尤其是对毛刺电压和其他高频谐波。因此,在包含RF(或其他模拟) 电路的PCB 板上的电源线布线必须比在普通数字电路板上布线更加仔细,应避免采用自动布线。同时也应注意到,微控制器(或其他数字电路) 会在每个内部时钟周期内短时间突然吸入大部分电流,这是由于现代微控制器都采用CMOS 工艺设计。因此,假设一个微控制器以1 MHz 的内部时钟频率运行,它将以此频率从电源提取(脉冲) 电流,如果不采取合适的电源去耦,必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF 部分的电源引脚,严重的可能导致工作失效,因此必须保证将模拟电源线与数字电路区域隔开。

(2) 不合理的地线
RF 电路板应该总是布有与电源负极相连的地线层,如果处理不当,可能产生一些奇怪的现象。对于一个数字电路设计者来说这也许难于理解,因为即使没有地线层,大多数数字电路功能也表现良好。而在RF 频段,即使一根很短的线也会如电感一样作用。粗略计算,每mm 长度的电感量约为1 nH , 434 MHz 时10 mmPCB 线路的感抗约为27 Ω。如果不采用地线层,大多数地线将会较长,电路将无法保证设计特性。

(3) 天线对其他模拟部分的辐射
在包含射频和其他部分的电路中,这一点经常被忽略。除了RF 部分,板上通常还有其他模拟电路。例如,许多微控制器内置模数转换器(ADC) 用于测量模拟输入以及电池电压或其他参数。如果射频发送器的天线位于此PCB 附近(或就在此PCB 上) ,发出的高频信号可能会到达ADC 的模拟输入端。不要忘记任何电路线路都可能如天线一样发出或接收RF 信号。如果ADC 输入端处理不合理,RF 信号可能在ADC输入的ESD二极管内自激,从而引起ADC 的偏差。

3、RF 电路和数字电路做在同块PCB 上的解决方案

以下给出在大多数RF 应用中的一些通用设计和布线策略。然而,遵循实际应用中RF 器件的布线建议更为重要。

(1) 一个可靠的地线层面
当设计有RF 元件的PCB 时,应该总是采用一个可靠的地线层。其目的是在电路中建立一个有效的0 V 电位点,使所有的器件容易去耦。供电电源的0 V 端子应直接连接在此地线层。由于地线层的低阻抗,已被去耦的两个节点间将不会产生信号耦合。对于板上多个信号幅值可能相差120 dB ,这一点非常重要。在表面贴装的PCB 上,所有信号布线在元件安装面的同一面,地线层则在其反面。理想的地线层应覆盖整个PCB ( 除了天线PCB 下方) 。如果采用两层以上的PCB ,地线层应放置在邻近信号层的层上(如元件面的下一层) 。另一个好方法是将信号布线层的空余部分也用地线平面填充,这些地线平面必须通过多个过孔与主地线层面连接。需要注意的是:由于接地点的存在会引起旁边的电感特性改变,因此选择电感值和布置电感是必须仔细考虑的。

(2) 缩短与地线层的连接距离
所有对地线层的连接必须尽量短,接地过孔应放置在(或非常接近) 元件的焊盘处。决不要让两个地信号共用一个接地过孔,这可能导致由于过孔连接阻抗在两个焊盘之间产生串扰。

(3) RF 去耦
去耦电容应该放置在尽可能靠近引脚的位置,每个需要去耦的引脚处都应采用电容去耦。采用高品质的陶瓷电容,介电类型最好是“ NPO” , “ X7R” 在大多数应用中也能较好工作。理想的选择电容值应使其串联谐振等于信号频率。例如434 MHz 时,SMD 贴装的100 p F 电容将良好工作,此频率时,电容的容抗约为4 Ω,过孔的感抗也在同样范围。串联的电容和过孔对于信号频率形成一个陷波滤波器,使之能有效的去耦。868 MHz 时,33 p F 电容是一个理想的选择。除了RF 去耦的小值电容,一个大值电容也应放置在电源线路上去耦低频,可选择一个2. 2 μF陶瓷或10μF 的钽电容。

(4) 电源的星形布线
星形布线是模拟电路设计中众所周知的技巧(如图1所示) 。星形布线———电路板上各模块具有各自的来自公共供电电源点的电源线路。在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。这是一个隔开来自数字部分和来自RF 部分电源噪声的有效方法。如果将有严重噪声的模块置于同一电路板上,可以将电感(磁珠) 或小阻值电阻(10 Ω) 串联在电源线和模块之间,并且必须采用至少10 μF 的钽电容作这些模块的电源去耦。这样的模块如RS 232 驱动器或开关电源稳压器。






(5) 合理安排PCB 布局
为减小来自噪声模块及周边模拟部分的干扰,各电路模块在板上的布局是重要的。应总是将敏感的模块( RF部分和天线) 远离噪声模块(微控制器和RS 232 驱动器)以避免干扰。

(6) 屏蔽RF 信号对其他模拟部分的影响
如上所述,RF 信号在发送时会对其他敏感模拟电路模块如ADC 造成干扰。大多数问题发生在较低的工作频段(如27 MHz) 以及高的功率输出水平。用RF 去耦电容(100p F) 连接到地来去耦敏感点是一个好的设计习惯。

(7) 在板环形天线的特别考虑
天线可以整体做在PCB 上。对比传统的鞭状天线,不仅节省空间和生产成本,机构上也更稳固可靠。惯例中,环形天线(loop antenna) 设计应用于相对较窄的带宽,这有助于抑制不需要的强信号以免干扰接收器。应注意到环形天线(正如所有其他天线) 可能收到由附近噪声信号线路容性耦合的噪声。它会干扰接收器,也可能影响发送器的调制。因此在天线附近一定不要布数字信号线路,并建议在天线周围保持自由空间。接近天线的任何物体都将构成调谐网络的一部分,而导致天线调谐偏离预想的频点,使收发辐射范围(距离) 减小。对于所有的各类天线必须注意这一事实,电路板的外壳(外围包装) 也可能影响天线调谐。同时应注意去除天线面积处的地线层面,否则天线不能有效工作。

(8) 电路板的连接
如果用电缆将RF 电路板连接到外部数字电路,应使用双绞线缆。每一根信号线必须和GND 线双绞在一起(DIN/ GND , DOUT/ GND , CS/ GND , PWR _ UP/ GND) 。切记将RF 电路板和数字应用电路板用双绞线缆的GND线连接起来,线缆长度应尽量短。给RF 电路板供电的线路也必须与GND 双绞(VDD/ GND) 。

结论
迅速发展的射频集成电路为从事无线数字音频、视频数据传输系统,无线遥控、遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等设计的工程技术人员解决无线应用的瓶颈提供了最大的可能。同时,射频电路的设计又要求设计者具有一定的实践经验和工程设计能力。本文是笔者在实际开发中总结的经验,希望可以帮助众多射频集成电路开发者缩短开发周期,避免走不必要的弯路,节省人力和财力。
 
 
来源:网络 查看全部
单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。

QQ截图20170323130728.png

1、数字电路与模拟电路的潜在矛盾

如果模拟电路(射频) 和数字电路(微控制器) 单独工作可能各自工作良好,但是一旦将两者放在同一块电路板上,使用同一个电源供电一起工作,整个系统很可能就会不稳定。这主要是因为数字信号频繁的在地和正电源(大小3 V) 之间摆动,而且周期特别短,常常是ns 级的。由于较大的振幅和较小的切换时间,使得这些数字信号包含大量的且独立于切换频率的高频成分。而在模拟部分,从天线调谐回路传到无线设备接收部分的信号一般小于1μV。因此数字信号与射频信号之间的差别将达到10-6(120 dB) 。显然,如果数字信号与射频信号不能很好的分离,微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。

2 、RF电路和数字电路做在同一PCB上的常见问题

不能充分的隔离敏感线路和噪声信号线是常常出现的问题。如上所述,数字信号具有高的摆幅并包含大量高频谐波。如果PCB 板上的数字信号布线邻近敏感的模拟信号,高频谐波可能会耦合过去。RF 器件的最敏感节点通常为锁相环( PLL) 的环路滤波电路,外接的压控振荡器(VCO) 电感,晶振基准信号和天线端子,电路的这些部分应该特别仔细处理。

(1) 供电电源噪声
由于输入/ 输出信号有几V 的摆幅,数字电路对于电源噪声(小于50 mV) 一般可以接受。而模拟电路对于电源噪声却相当敏感,尤其是对毛刺电压和其他高频谐波。因此,在包含RF(或其他模拟) 电路的PCB 板上的电源线布线必须比在普通数字电路板上布线更加仔细,应避免采用自动布线。同时也应注意到,微控制器(或其他数字电路) 会在每个内部时钟周期内短时间突然吸入大部分电流,这是由于现代微控制器都采用CMOS 工艺设计。因此,假设一个微控制器以1 MHz 的内部时钟频率运行,它将以此频率从电源提取(脉冲) 电流,如果不采取合适的电源去耦,必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF 部分的电源引脚,严重的可能导致工作失效,因此必须保证将模拟电源线与数字电路区域隔开。

(2) 不合理的地线
RF 电路板应该总是布有与电源负极相连的地线层,如果处理不当,可能产生一些奇怪的现象。对于一个数字电路设计者来说这也许难于理解,因为即使没有地线层,大多数数字电路功能也表现良好。而在RF 频段,即使一根很短的线也会如电感一样作用。粗略计算,每mm 长度的电感量约为1 nH , 434 MHz 时10 mmPCB 线路的感抗约为27 Ω。如果不采用地线层,大多数地线将会较长,电路将无法保证设计特性。

(3) 天线对其他模拟部分的辐射
在包含射频和其他部分的电路中,这一点经常被忽略。除了RF 部分,板上通常还有其他模拟电路。例如,许多微控制器内置模数转换器(ADC) 用于测量模拟输入以及电池电压或其他参数。如果射频发送器的天线位于此PCB 附近(或就在此PCB 上) ,发出的高频信号可能会到达ADC 的模拟输入端。不要忘记任何电路线路都可能如天线一样发出或接收RF 信号。如果ADC 输入端处理不合理,RF 信号可能在ADC输入的ESD二极管内自激,从而引起ADC 的偏差。

3、RF 电路和数字电路做在同块PCB 上的解决方案

以下给出在大多数RF 应用中的一些通用设计和布线策略。然而,遵循实际应用中RF 器件的布线建议更为重要。

(1) 一个可靠的地线层面
当设计有RF 元件的PCB 时,应该总是采用一个可靠的地线层。其目的是在电路中建立一个有效的0 V 电位点,使所有的器件容易去耦。供电电源的0 V 端子应直接连接在此地线层。由于地线层的低阻抗,已被去耦的两个节点间将不会产生信号耦合。对于板上多个信号幅值可能相差120 dB ,这一点非常重要。在表面贴装的PCB 上,所有信号布线在元件安装面的同一面,地线层则在其反面。理想的地线层应覆盖整个PCB ( 除了天线PCB 下方) 。如果采用两层以上的PCB ,地线层应放置在邻近信号层的层上(如元件面的下一层) 。另一个好方法是将信号布线层的空余部分也用地线平面填充,这些地线平面必须通过多个过孔与主地线层面连接。需要注意的是:由于接地点的存在会引起旁边的电感特性改变,因此选择电感值和布置电感是必须仔细考虑的。

(2) 缩短与地线层的连接距离
所有对地线层的连接必须尽量短,接地过孔应放置在(或非常接近) 元件的焊盘处。决不要让两个地信号共用一个接地过孔,这可能导致由于过孔连接阻抗在两个焊盘之间产生串扰。

(3) RF 去耦
去耦电容应该放置在尽可能靠近引脚的位置,每个需要去耦的引脚处都应采用电容去耦。采用高品质的陶瓷电容,介电类型最好是“ NPO” , “ X7R” 在大多数应用中也能较好工作。理想的选择电容值应使其串联谐振等于信号频率。例如434 MHz 时,SMD 贴装的100 p F 电容将良好工作,此频率时,电容的容抗约为4 Ω,过孔的感抗也在同样范围。串联的电容和过孔对于信号频率形成一个陷波滤波器,使之能有效的去耦。868 MHz 时,33 p F 电容是一个理想的选择。除了RF 去耦的小值电容,一个大值电容也应放置在电源线路上去耦低频,可选择一个2. 2 μF陶瓷或10μF 的钽电容。

(4) 电源的星形布线
星形布线是模拟电路设计中众所周知的技巧(如图1所示) 。星形布线———电路板上各模块具有各自的来自公共供电电源点的电源线路。在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。这是一个隔开来自数字部分和来自RF 部分电源噪声的有效方法。如果将有严重噪声的模块置于同一电路板上,可以将电感(磁珠) 或小阻值电阻(10 Ω) 串联在电源线和模块之间,并且必须采用至少10 μF 的钽电容作这些模块的电源去耦。这样的模块如RS 232 驱动器或开关电源稳压器。

QQ截图20170323130807.png


(5) 合理安排PCB 布局
为减小来自噪声模块及周边模拟部分的干扰,各电路模块在板上的布局是重要的。应总是将敏感的模块( RF部分和天线) 远离噪声模块(微控制器和RS 232 驱动器)以避免干扰。

(6) 屏蔽RF 信号对其他模拟部分的影响
如上所述,RF 信号在发送时会对其他敏感模拟电路模块如ADC 造成干扰。大多数问题发生在较低的工作频段(如27 MHz) 以及高的功率输出水平。用RF 去耦电容(100p F) 连接到地来去耦敏感点是一个好的设计习惯。

(7) 在板环形天线的特别考虑
天线可以整体做在PCB 上。对比传统的鞭状天线,不仅节省空间和生产成本,机构上也更稳固可靠。惯例中,环形天线(loop antenna) 设计应用于相对较窄的带宽,这有助于抑制不需要的强信号以免干扰接收器。应注意到环形天线(正如所有其他天线) 可能收到由附近噪声信号线路容性耦合的噪声。它会干扰接收器,也可能影响发送器的调制。因此在天线附近一定不要布数字信号线路,并建议在天线周围保持自由空间。接近天线的任何物体都将构成调谐网络的一部分,而导致天线调谐偏离预想的频点,使收发辐射范围(距离) 减小。对于所有的各类天线必须注意这一事实,电路板的外壳(外围包装) 也可能影响天线调谐。同时应注意去除天线面积处的地线层面,否则天线不能有效工作。

(8) 电路板的连接
如果用电缆将RF 电路板连接到外部数字电路,应使用双绞线缆。每一根信号线必须和GND 线双绞在一起(DIN/ GND , DOUT/ GND , CS/ GND , PWR _ UP/ GND) 。切记将RF 电路板和数字应用电路板用双绞线缆的GND线连接起来,线缆长度应尽量短。给RF 电路板供电的线路也必须与GND 双绞(VDD/ GND) 。

结论
迅速发展的射频集成电路为从事无线数字音频、视频数据传输系统,无线遥控、遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等设计的工程技术人员解决无线应用的瓶颈提供了最大的可能。同时,射频电路的设计又要求设计者具有一定的实践经验和工程设计能力。本文是笔者在实际开发中总结的经验,希望可以帮助众多射频集成电路开发者缩短开发周期,避免走不必要的弯路,节省人力和财力。
 
 
来源:网络
397 浏览

PCB设计经验「精辟」

设备硬件类 冲上云霄 2017-03-08 18:49 发表了文章 来自相关话题

说到PCB板,很多朋友会想到它在我们周围随处可见,从一切的家用电器,电脑内的各种配件,到各种数码产品,只要是电子产品几乎都会用到PCB板,那么到底什么是PCB板呢?PCB板就是PrintedCircuitBlock,即印制电路板,供电子组件安插,有线路的基版。通过使用印刷方式将镀铜的基版印上防蚀线路,并加以蚀刻冲洗出线路。






PCB板可以分为单层板、双层板和多层板。各种电子元件都是被集成在PCB板上的,在最基本的单层PCB上,零件都集中在一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,这样的PCB的正反面分别被称为零件面(ComponentSide)与焊接面(SolderSide)。双层板可以看作把两个单层板相对粘合在一起组成,板的两面都有电子元件和走线。有时候需要把一面的单线连接到板的另一面,这就要通过导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。现在很多电脑主板都在用4层甚至6层PCB板,而显卡一般都在用了6层PCB板,很多高端显卡像nVIDIAGeForce4Ti系列就采用了8层PCB板,这就是所谓的多层PCB板。在多层PCB板上也会遇到连接各个层之间线路的问题,也可以通过导孔来实现。由于是多层PCB板,所以有时候导孔不需要穿透整个PCB板,这样的导孔叫做埋孔(Buriedvias)和盲孔(Blindvias),因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。采用的PCB板层数越多,成本也就越高。当然,采用更多层的PCB板对提供信号的稳定性很有帮助。

专业的PCB板制作过程相当复杂,拿4层PCB板为例。主板的PCB大都是4层的。制造的时候是先将中间两层各自碾压、裁剪、蚀刻、氧化电镀后,这4层分别是元器件面、电源层、地层和焊锡压层。再将这4层放在一起碾压成一块主板的PCB。接着打孔、做过孔。洗净之后,将外面两层的线路印上、敷铜、蚀刻、测试、阻焊层、丝印。最后将整版PCB(含许多块主板)冲压成一块块主板的PCB,再通过测试后进行真空包装。如果PCB制作过程中铜皮敷着得不好,会有粘贴不牢现象,容易隐含短路或电容效应(容易产生干扰)。PCB上的过孔也是必须注意的。如果孔打得不是在正中间,而是偏向一边,就会产生不均匀匹配,或者容易与中间的电源层或地层接触,从而产生潜在短路或接地不良因素。

铜线布线过程

制作的第一步是建立出零件间联机的布线。我们采用负片转印方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。正光阻剂是由感光剂制成的,它在照明下会溶解。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光。这些被光阻剂盖住的地方,将会变成布线。在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂使用三氯化铁等。蚀刻结束后将剩下的光阻剂去除掉。

1.布线宽度和电流

一般宽度不宜小于0.2mm(8mil)
在高密度高精度的PCB上,间距和线宽一般0.3mm(12mil)。
当铜箔的厚度在50um左右时,导线宽度1~1.5mm (60mil) = 2A
公共地一般80mil,对于有微处理器的应用更要注意。

2.到底多高的频率才算高速板?

当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号.
对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,
按照一本非常经典的书《High Speed Digtal Design>的理论,信号从10%上升到90%的时间小于6倍导线延时,就是高速信号!------即!即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线路论

3.PCB板的堆叠与分层

四层板有以下几种叠层顺序。下面分别把各种不同的叠层优劣作说明:

第一种情况
GND
S1+POWER
S2+POWER
GND

第二种情况
SIG1
GND
POWER
SIG2

第三种情况

GND
S1
S2
POWER

注:S1 信号布线一层,S2 信号布线二层;GND 地层 POWER 电源层

第一种情况,应当是四层板中最好的一种情况。因为外层是地层,对EMI有屏蔽作用,同时电源层同地层也可靠得很近,使得电源内阻较小,取得最佳郊果。但第一种情况不能用于当本板密度比较大的情况。因为这样一来,就不能保证第一层地的完整性,这样第二层信号会变得更差。另外,此种结构也不能用于全板功耗比较大的情况。

第二种情况,是我们平时最常用的一种方式。从板的结构上,也不适用于高速数字电路设计。因为在这种结构中,不易保持低电源阻抗。以一个板2毫米为例:要求Z0=50ohm. 以线宽为8mil.铜箔厚为35цm。这样信号一层与地层中间是0.14mm。而地层与电源层为1.58mm。这样就大大的增加了电源的内阻。在此种结构中,由于辐射是向空间的,需加屏蔽板,才能减少EMI。

第三种情况,S1层上信号线质量最好。S2次之。对EMI有屏蔽作用。但电源阻抗较大。此板能用于全板功耗大而该板是干扰源或者说紧临着干扰源的情况下。

4.阻抗匹配

反射电压信号的幅值由源端反射系数ρs和负载反射系数ρL 决定
ρL = (RL - Z0) / (RL + Z0) 和 ρS = (RS - Z0) / (RS + Z0)
在上式中,若RL=Z0则负载反射系数ρL=0。若 RS=Z0源端反射系数ρS=0。

由于普通的传输线阻抗Z0通常应满足50Ω的要求50Ω左右,而负载阻抗通常在几千欧姆到几十千欧姆。因此,在负载端实现阻抗匹配比较困难。然而,由于信号源端(输出)阻抗通常比较小,大致为十几欧姆。因此在源端实现阻抗匹配要容易的多。如果在负载端并接电阻,电阻会吸收部分信号对传输不利(我的理解).当选择TTL/CMOS标准 24mA驱动电流时,其输出阻抗大致为13Ω。若传输线阻抗Z0=50Ω,那么应该加一个33Ω的源端匹配电阻。13Ω+33Ω=46Ω (近似于50Ω,弱的欠阻尼有助于信号的setup时间)

当选择其他传输标准和驱动电流时,匹配阻抗会有差异。在高速的逻辑和电路设计时,对一些关键的信号,如时钟、控制信号等,我们建议一定要加源端匹配电阻。

这样接了信号还会从负载端反射回来,因为源端阻抗匹配,反射回来的信号不会再反射回去。

5.电源线和地线布局注意事项

电源线尽量短,走直线,而且最好走树形、不要走环形

地线环路问题:对于数字电路来说,地线环路造成的地线环流也就是几十毫伏级别的,而TTL的抗干扰门限是1.2V,CMOS电路更可以达到1/2电源电压,也就是说地线环流根本就不会对电路的工作造成不良影响。相反,如果地线不闭合,问题会更大,因为数字电路在工作的时候产生的脉冲电源电流会造成各点的地电位不平衡,比如本人实测74LS161在反转时地线电流1.2A(用2Gsps示波器测出,地电流脉冲宽度7ns)。在大脉冲电流的冲击下,如果采用枝状地线(线宽25mil)分布,地线间各个点的电位差将会达到百毫伏级别。而采用地线环路之后,脉冲电流会散布到地线的各个点去,大大降低了干扰电路的可能。采用闭合地线,实测出各器件的地线最大瞬时电位差是不闭合地线的二分之一到五分之一。当然不同密度不同速度的电路板实测数据差异很大,我上面所说,指的是大约相当于Protel 99SE所附带的Z80 Demo板的水平;对于低频模拟电路,我认为地线闭合后的工频干扰是从空间感应到的,这是无论如何也仿真和计算不出来的。如果地线不闭合,不会产生地线涡流,beckhamtao所谓“但地线开环这个工频感应电压会更大。”的理论依据和在?举两个实例,7年前我接手别人的一个项目,精密压力计,用的是14位A/D转换器,但实测只有11位有效精度,经查,地线上有15mVp-p的工频干扰,解决方法就是把PCB的模拟地环路划开,前端传感器到A/D的地线用飞线作枝状分布,后来量产的型号PCB重新按照飞线的走线生产,至今未出现问题。第二个例子,一个朋友热爱发烧,自己DIY了一台功放,但输出始终有交流声,我建议其将地线环路切开,问题解决。事后此位老兄查阅数十种“Hi-Fi名机”PCB图,证实无一种机器在模拟部分采用地线环路。

6.印制电路板设计原则和抗干扰措施

印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。

PCB设计的一般原则

要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则:

布局

首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。

在确定特殊元件的位置时要遵守以下原则:

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

(3)重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

(5)应留出印制扳定位孔及固定支架所占用的位置。

根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:

(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、 整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。

(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。

2.布线

布线的原则如下:

(1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。

(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为 1 ~ 15mm 时.通过 2A的电流,温度不会高于3℃,因此.导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。

(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

3.焊盘

焊盘中心孔要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

PCB及电路抗干扰措施

印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。

1.电源线设计

根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

2.地线设计

地线设计的原则是:

(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。

(2)接地线应尽量加粗。若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm以上。

(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。

3.退藕电容配置

PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。

退藕电容的一般配置原则是:

(1)电源输入端跨接10 ~100uf的电解电容器。如有可能,接100uF以上的更好。

(2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1 ~ 10pF的但电容。

(3)对于抗噪能力弱、关断时电源变化大的器件,如 RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。

(4)电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:

(1)在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的 RC 电路来吸收放电电流。一般 R 取 1 ~ 2K,C取2.2 ~ 47UF。

(2)CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。

7.实现PCB高效自动布线的设计技巧和要点

尽管现在的EDA工具很强大,但随着PCB尺寸要求越来越小,器件密度越来越高,PCB设计的难度并不小。如何实现PCB高的布通率以及缩短设计时间呢?本文介绍PCB规划、布局和布线的设计技巧和要点。 现在PCB设计的时间越来越短,越来越小的电路板空间,越来越高的器件密度,极其苛刻的布局规则和大尺寸的组件使得设计师的工作更加困难。为了解决设计上的困难,加快产品的上市,现在很多厂家倾向于采用专用EDA工具来实现PCB的设计。但专用的EDA工具并不能产生理想的结果,也不能达到100%的布通率,而且很乱,通常还需花很多时间完成余下的工作。

现在市面上流行的EDA工具软件很多,但除了使用的术语和功能键的位置不一样外都大同小异,如何用这些工具更好地实现PCB的设计呢?在开始布线之前对设计进行认真的分析以及对工具软件进行认真的设置将使设计更加符合要求。下面是一般的设计过程和步骤。

1、确定PCB的层数

电路板尺寸和布线层数需要在设计初期确定。如果设计要求使用高密度球栅数组(BGA)组件,就必须考虑这些器件布线所需要的最少布线层数。布线层的数量以及层叠(stack-up)方式会直接影响到印制线的布线和阻抗。板的大小有助于确定层叠方式和印制线宽度,实现期望的设计效果。

多年来,人们总是认为电路板层数越少成本就越低,但是影响电路板的制造成本还有许多其它因素。近几年来,多层板之间的成本差别已经大大减小。在开始设计时最好采用较多的电路层并使敷铜均匀分布,以避免在设计临近结束时才发现有少量信号不符合已定义的规则以及空间要求,从而被迫添加新层。在设计之前认真的规划将减少布线中很多的麻烦。

2、设计规则和限制

自动布线工具本身并不知道应该做些什幺。为完成布线任务,布线工具需要在正确的规则和限制条件下工作。不同的信号线有不同的布线要求,要对所有特殊要求的信号线进行分类,不同的设计分类也不一样。每个信号类都应该有优先级,优先级越高,规则也越严格。规则涉及印制线宽度、过孔的最大数量、平行度、信号线之间的相互影响以及层的限制,这些规则对布线工具的性能有很大影响。认真考虑设计要求是成功布线的重要一步。

3、组件的布局

为最优化装配过程,可制造性设计(DFM)规则会对组件布局产生限制。如果装配部门允许组件移动,可以对电路适当优化,更便于自动布线。所定义的规则和约束条件会影响布局设计。

在布局时需考虑布线路径(routing channel)和过孔区域。这些路径和区域对设计人员而言是显而易见的,但自动布线工具一次只会考虑一个信号,通过设置布线约束条件以及设定可布信号线的层,可以使布线工具能像设计师所设想的那样完成布线。

4、扇出设计

在扇出设计阶段,要使自动布线工具能对组件引脚进行连接,表面贴装器件的每一个引脚至少应有一个过孔,以便在需要更多的连接时,电路板能够进行内层连接、在线测试(ICT)和电路再处理。

为了使自动布线工具效率最高,一定要尽可能使用最大的过孔尺寸和印制线,间隔设置为50mil较为理想。要采用使布线路径数最大的过孔类型。进行扇出设计时,要考虑到电路在线测试问题。测试夹具可能很昂贵,而且通常是在即将投入全面生产时才会订购,如果这时候才考虑添加节点以实现100%可测试性就太晚了。

经过慎重考虑和预测,电路在线测试的设计可在设计初期进行,在生产过程后期实现,根据布线路径和电路在线测试来确定过孔扇出类型,电源和接地也会影响到布线和扇出设计。为降低滤波电容器连接线产生的感抗,过孔应尽可能靠近表面贴装器件的引脚,必要时可采用手动布线,这可能会对原来设想的布线路径产生影响,甚至可能会导致你重新考虑使用哪种过孔,因此必须考虑过孔和引脚感抗间的关系并设定过孔规格的优先级。

5、手动布线以及关键信号的处理

尽管本文主要论述自动布线问题,但手动布线在现在和将来都是印刷电路板设计的一个重要过程。采用手动布线有助于自动布线工具完成布线工作。如图2a和图2b所示,通过对挑选出的网络(net)进行手动布线并加以固定,可以形成自动布线时可依据的路径。

无论关键信号的数量有多少,首先对这些信号进行布线,手动布线或结合自动布线工具均可。关键信号通常必须通过精心的电路设计才能达到期望的性能。布线完成后,再由有关的工程人员来对这些信号布线进行检查,这个过程相对容易得多。检查通过后,将这些线固定,然后开始对其余信号进行自动布线。

6、自动布线

对关键信号的布线需要考虑在布线时控制一些电参数,比如减小分布电感和EMC等,对于其它信号的布线也类似。所有的EDA厂商都会提供一种方法来控制这些参数。在了解自动布线工具有哪些输入参数以及输入参数对布线的影响后,自动布线的质量在一定程度上可以得到保证。

应该采用通用规则来对信号进行自动布线。通过设置限制条件和禁止布线区来限定给定信号所使用的层以及所用到的过孔数量,布线工具就能按照工程师的设计思想来自动布线。如果对自动布线工具所用的层和所布过孔的数量不加限制,自动布线时将会使用到每一层,而且将会产生很多过孔。

在设置好约束条件和应用所创建的规则后,自动布线将会达到与预期相近的结果,当然可能还需要进行一些整理工作,同时还需要确保其它信号和网络布线的空间。在一部分设计完成以后,将其固定下来,以防止受到后边布线过程的影响。

采用相同的步骤对其余信号进行布线。布线次数取决于电路的复杂性和你所定义的通用规则的多少。每完成一类信号后,其余网络布线的约束条件就会减少。但随之而来的是很多信号布线需要手动干预。现在的自动布线工具功能非常强大,通常可完成100%的布线。但是当自动布线工具未完成全部信号布线时,就需对余下的信号进行手动布线。

7、自动布线的设计要点包括:

7.1 略微改变设置,试用多种路径布线;

7.2 保持基本规则不变,试用不同的布线层、不同的印制线和间隔宽度以及不同线宽、不同类型的过孔如盲孔、埋孔等,观察这些因素对设计结果有何影响;

7.3让布线工具对那些默认的网络根据需要进行处理;

7.4信号越不重要,自动布线工具对其布线的自由度就越大。

8、布线的整理

如果你所使用的EDA工具软件能够列出信号的布线长度,检查这些数据,你可能会发现一些约束条件很少的信号布线的长度很长。这个问题比较容易处理,通过手动编辑可以缩短信号布线长度和减少过孔数量。在整理过程中,你需要判断出哪些布线合理,哪些布线不合理。同手动布线设计一样,自动布线设计也能在检查过程中进行整理和编辑。

9、电路板的外观

以前的设计常常注意电路板的视觉效果,现在不一样了。自动设计的电路板不比手动设计的美观,但在电子特性上能满足规定的要求,而且设计的完整性能得到保证。
 
 
来源:网络 查看全部
说到PCB板,很多朋友会想到它在我们周围随处可见,从一切的家用电器,电脑内的各种配件,到各种数码产品,只要是电子产品几乎都会用到PCB板,那么到底什么是PCB板呢?PCB板就是PrintedCircuitBlock,即印制电路板,供电子组件安插,有线路的基版。通过使用印刷方式将镀铜的基版印上防蚀线路,并加以蚀刻冲洗出线路。

QQ截图20170308184851.png


PCB板可以分为单层板、双层板和多层板。各种电子元件都是被集成在PCB板上的,在最基本的单层PCB上,零件都集中在一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,这样的PCB的正反面分别被称为零件面(ComponentSide)与焊接面(SolderSide)。双层板可以看作把两个单层板相对粘合在一起组成,板的两面都有电子元件和走线。有时候需要把一面的单线连接到板的另一面,这就要通过导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。现在很多电脑主板都在用4层甚至6层PCB板,而显卡一般都在用了6层PCB板,很多高端显卡像nVIDIAGeForce4Ti系列就采用了8层PCB板,这就是所谓的多层PCB板。在多层PCB板上也会遇到连接各个层之间线路的问题,也可以通过导孔来实现。由于是多层PCB板,所以有时候导孔不需要穿透整个PCB板,这样的导孔叫做埋孔(Buriedvias)和盲孔(Blindvias),因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。采用的PCB板层数越多,成本也就越高。当然,采用更多层的PCB板对提供信号的稳定性很有帮助。

专业的PCB板制作过程相当复杂,拿4层PCB板为例。主板的PCB大都是4层的。制造的时候是先将中间两层各自碾压、裁剪、蚀刻、氧化电镀后,这4层分别是元器件面、电源层、地层和焊锡压层。再将这4层放在一起碾压成一块主板的PCB。接着打孔、做过孔。洗净之后,将外面两层的线路印上、敷铜、蚀刻、测试、阻焊层、丝印。最后将整版PCB(含许多块主板)冲压成一块块主板的PCB,再通过测试后进行真空包装。如果PCB制作过程中铜皮敷着得不好,会有粘贴不牢现象,容易隐含短路或电容效应(容易产生干扰)。PCB上的过孔也是必须注意的。如果孔打得不是在正中间,而是偏向一边,就会产生不均匀匹配,或者容易与中间的电源层或地层接触,从而产生潜在短路或接地不良因素。

铜线布线过程

制作的第一步是建立出零件间联机的布线。我们采用负片转印方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。正光阻剂是由感光剂制成的,它在照明下会溶解。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光。这些被光阻剂盖住的地方,将会变成布线。在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂使用三氯化铁等。蚀刻结束后将剩下的光阻剂去除掉。

1.布线宽度和电流

一般宽度不宜小于0.2mm(8mil)
在高密度高精度的PCB上,间距和线宽一般0.3mm(12mil)。
当铜箔的厚度在50um左右时,导线宽度1~1.5mm (60mil) = 2A
公共地一般80mil,对于有微处理器的应用更要注意。

2.到底多高的频率才算高速板?

当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号.
对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,
按照一本非常经典的书《High Speed Digtal Design>的理论,信号从10%上升到90%的时间小于6倍导线延时,就是高速信号!------即!即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线路论

3.PCB板的堆叠与分层

四层板有以下几种叠层顺序。下面分别把各种不同的叠层优劣作说明:

第一种情况
GND
S1+POWER
S2+POWER
GND

第二种情况
SIG1
GND
POWER
SIG2

第三种情况

GND
S1
S2
POWER

注:S1 信号布线一层,S2 信号布线二层;GND 地层 POWER 电源层

第一种情况,应当是四层板中最好的一种情况。因为外层是地层,对EMI有屏蔽作用,同时电源层同地层也可靠得很近,使得电源内阻较小,取得最佳郊果。但第一种情况不能用于当本板密度比较大的情况。因为这样一来,就不能保证第一层地的完整性,这样第二层信号会变得更差。另外,此种结构也不能用于全板功耗比较大的情况。

第二种情况,是我们平时最常用的一种方式。从板的结构上,也不适用于高速数字电路设计。因为在这种结构中,不易保持低电源阻抗。以一个板2毫米为例:要求Z0=50ohm. 以线宽为8mil.铜箔厚为35цm。这样信号一层与地层中间是0.14mm。而地层与电源层为1.58mm。这样就大大的增加了电源的内阻。在此种结构中,由于辐射是向空间的,需加屏蔽板,才能减少EMI。

第三种情况,S1层上信号线质量最好。S2次之。对EMI有屏蔽作用。但电源阻抗较大。此板能用于全板功耗大而该板是干扰源或者说紧临着干扰源的情况下。

4.阻抗匹配

反射电压信号的幅值由源端反射系数ρs和负载反射系数ρL 决定
ρL = (RL - Z0) / (RL + Z0) 和 ρS = (RS - Z0) / (RS + Z0)
在上式中,若RL=Z0则负载反射系数ρL=0。若 RS=Z0源端反射系数ρS=0。

由于普通的传输线阻抗Z0通常应满足50Ω的要求50Ω左右,而负载阻抗通常在几千欧姆到几十千欧姆。因此,在负载端实现阻抗匹配比较困难。然而,由于信号源端(输出)阻抗通常比较小,大致为十几欧姆。因此在源端实现阻抗匹配要容易的多。如果在负载端并接电阻,电阻会吸收部分信号对传输不利(我的理解).当选择TTL/CMOS标准 24mA驱动电流时,其输出阻抗大致为13Ω。若传输线阻抗Z0=50Ω,那么应该加一个33Ω的源端匹配电阻。13Ω+33Ω=46Ω (近似于50Ω,弱的欠阻尼有助于信号的setup时间)

当选择其他传输标准和驱动电流时,匹配阻抗会有差异。在高速的逻辑和电路设计时,对一些关键的信号,如时钟、控制信号等,我们建议一定要加源端匹配电阻。

这样接了信号还会从负载端反射回来,因为源端阻抗匹配,反射回来的信号不会再反射回去。

5.电源线和地线布局注意事项

电源线尽量短,走直线,而且最好走树形、不要走环形

地线环路问题:对于数字电路来说,地线环路造成的地线环流也就是几十毫伏级别的,而TTL的抗干扰门限是1.2V,CMOS电路更可以达到1/2电源电压,也就是说地线环流根本就不会对电路的工作造成不良影响。相反,如果地线不闭合,问题会更大,因为数字电路在工作的时候产生的脉冲电源电流会造成各点的地电位不平衡,比如本人实测74LS161在反转时地线电流1.2A(用2Gsps示波器测出,地电流脉冲宽度7ns)。在大脉冲电流的冲击下,如果采用枝状地线(线宽25mil)分布,地线间各个点的电位差将会达到百毫伏级别。而采用地线环路之后,脉冲电流会散布到地线的各个点去,大大降低了干扰电路的可能。采用闭合地线,实测出各器件的地线最大瞬时电位差是不闭合地线的二分之一到五分之一。当然不同密度不同速度的电路板实测数据差异很大,我上面所说,指的是大约相当于Protel 99SE所附带的Z80 Demo板的水平;对于低频模拟电路,我认为地线闭合后的工频干扰是从空间感应到的,这是无论如何也仿真和计算不出来的。如果地线不闭合,不会产生地线涡流,beckhamtao所谓“但地线开环这个工频感应电压会更大。”的理论依据和在?举两个实例,7年前我接手别人的一个项目,精密压力计,用的是14位A/D转换器,但实测只有11位有效精度,经查,地线上有15mVp-p的工频干扰,解决方法就是把PCB的模拟地环路划开,前端传感器到A/D的地线用飞线作枝状分布,后来量产的型号PCB重新按照飞线的走线生产,至今未出现问题。第二个例子,一个朋友热爱发烧,自己DIY了一台功放,但输出始终有交流声,我建议其将地线环路切开,问题解决。事后此位老兄查阅数十种“Hi-Fi名机”PCB图,证实无一种机器在模拟部分采用地线环路。

6.印制电路板设计原则和抗干扰措施

印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。

PCB设计的一般原则

要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则:

布局

首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。

在确定特殊元件的位置时要遵守以下原则:

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

(3)重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

(5)应留出印制扳定位孔及固定支架所占用的位置。

根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:

(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、 整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。

(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。

2.布线

布线的原则如下:

(1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。

(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为 1 ~ 15mm 时.通过 2A的电流,温度不会高于3℃,因此.导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。

(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

3.焊盘

焊盘中心孔要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

PCB及电路抗干扰措施

印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。

1.电源线设计

根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

2.地线设计

地线设计的原则是:

(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。

(2)接地线应尽量加粗。若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm以上。

(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。

3.退藕电容配置

PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。

退藕电容的一般配置原则是:

(1)电源输入端跨接10 ~100uf的电解电容器。如有可能,接100uF以上的更好。

(2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1 ~ 10pF的但电容。

(3)对于抗噪能力弱、关断时电源变化大的器件,如 RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。

(4)电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:

(1)在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的 RC 电路来吸收放电电流。一般 R 取 1 ~ 2K,C取2.2 ~ 47UF。

(2)CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。

7.实现PCB高效自动布线的设计技巧和要点

尽管现在的EDA工具很强大,但随着PCB尺寸要求越来越小,器件密度越来越高,PCB设计的难度并不小。如何实现PCB高的布通率以及缩短设计时间呢?本文介绍PCB规划、布局和布线的设计技巧和要点。 现在PCB设计的时间越来越短,越来越小的电路板空间,越来越高的器件密度,极其苛刻的布局规则和大尺寸的组件使得设计师的工作更加困难。为了解决设计上的困难,加快产品的上市,现在很多厂家倾向于采用专用EDA工具来实现PCB的设计。但专用的EDA工具并不能产生理想的结果,也不能达到100%的布通率,而且很乱,通常还需花很多时间完成余下的工作。

现在市面上流行的EDA工具软件很多,但除了使用的术语和功能键的位置不一样外都大同小异,如何用这些工具更好地实现PCB的设计呢?在开始布线之前对设计进行认真的分析以及对工具软件进行认真的设置将使设计更加符合要求。下面是一般的设计过程和步骤。

1、确定PCB的层数

电路板尺寸和布线层数需要在设计初期确定。如果设计要求使用高密度球栅数组(BGA)组件,就必须考虑这些器件布线所需要的最少布线层数。布线层的数量以及层叠(stack-up)方式会直接影响到印制线的布线和阻抗。板的大小有助于确定层叠方式和印制线宽度,实现期望的设计效果。

多年来,人们总是认为电路板层数越少成本就越低,但是影响电路板的制造成本还有许多其它因素。近几年来,多层板之间的成本差别已经大大减小。在开始设计时最好采用较多的电路层并使敷铜均匀分布,以避免在设计临近结束时才发现有少量信号不符合已定义的规则以及空间要求,从而被迫添加新层。在设计之前认真的规划将减少布线中很多的麻烦。

2、设计规则和限制

自动布线工具本身并不知道应该做些什幺。为完成布线任务,布线工具需要在正确的规则和限制条件下工作。不同的信号线有不同的布线要求,要对所有特殊要求的信号线进行分类,不同的设计分类也不一样。每个信号类都应该有优先级,优先级越高,规则也越严格。规则涉及印制线宽度、过孔的最大数量、平行度、信号线之间的相互影响以及层的限制,这些规则对布线工具的性能有很大影响。认真考虑设计要求是成功布线的重要一步。

3、组件的布局

为最优化装配过程,可制造性设计(DFM)规则会对组件布局产生限制。如果装配部门允许组件移动,可以对电路适当优化,更便于自动布线。所定义的规则和约束条件会影响布局设计。

在布局时需考虑布线路径(routing channel)和过孔区域。这些路径和区域对设计人员而言是显而易见的,但自动布线工具一次只会考虑一个信号,通过设置布线约束条件以及设定可布信号线的层,可以使布线工具能像设计师所设想的那样完成布线。

4、扇出设计

在扇出设计阶段,要使自动布线工具能对组件引脚进行连接,表面贴装器件的每一个引脚至少应有一个过孔,以便在需要更多的连接时,电路板能够进行内层连接、在线测试(ICT)和电路再处理。

为了使自动布线工具效率最高,一定要尽可能使用最大的过孔尺寸和印制线,间隔设置为50mil较为理想。要采用使布线路径数最大的过孔类型。进行扇出设计时,要考虑到电路在线测试问题。测试夹具可能很昂贵,而且通常是在即将投入全面生产时才会订购,如果这时候才考虑添加节点以实现100%可测试性就太晚了。

经过慎重考虑和预测,电路在线测试的设计可在设计初期进行,在生产过程后期实现,根据布线路径和电路在线测试来确定过孔扇出类型,电源和接地也会影响到布线和扇出设计。为降低滤波电容器连接线产生的感抗,过孔应尽可能靠近表面贴装器件的引脚,必要时可采用手动布线,这可能会对原来设想的布线路径产生影响,甚至可能会导致你重新考虑使用哪种过孔,因此必须考虑过孔和引脚感抗间的关系并设定过孔规格的优先级。

5、手动布线以及关键信号的处理

尽管本文主要论述自动布线问题,但手动布线在现在和将来都是印刷电路板设计的一个重要过程。采用手动布线有助于自动布线工具完成布线工作。如图2a和图2b所示,通过对挑选出的网络(net)进行手动布线并加以固定,可以形成自动布线时可依据的路径。

无论关键信号的数量有多少,首先对这些信号进行布线,手动布线或结合自动布线工具均可。关键信号通常必须通过精心的电路设计才能达到期望的性能。布线完成后,再由有关的工程人员来对这些信号布线进行检查,这个过程相对容易得多。检查通过后,将这些线固定,然后开始对其余信号进行自动布线。

6、自动布线

对关键信号的布线需要考虑在布线时控制一些电参数,比如减小分布电感和EMC等,对于其它信号的布线也类似。所有的EDA厂商都会提供一种方法来控制这些参数。在了解自动布线工具有哪些输入参数以及输入参数对布线的影响后,自动布线的质量在一定程度上可以得到保证。

应该采用通用规则来对信号进行自动布线。通过设置限制条件和禁止布线区来限定给定信号所使用的层以及所用到的过孔数量,布线工具就能按照工程师的设计思想来自动布线。如果对自动布线工具所用的层和所布过孔的数量不加限制,自动布线时将会使用到每一层,而且将会产生很多过孔。

在设置好约束条件和应用所创建的规则后,自动布线将会达到与预期相近的结果,当然可能还需要进行一些整理工作,同时还需要确保其它信号和网络布线的空间。在一部分设计完成以后,将其固定下来,以防止受到后边布线过程的影响。

采用相同的步骤对其余信号进行布线。布线次数取决于电路的复杂性和你所定义的通用规则的多少。每完成一类信号后,其余网络布线的约束条件就会减少。但随之而来的是很多信号布线需要手动干预。现在的自动布线工具功能非常强大,通常可完成100%的布线。但是当自动布线工具未完成全部信号布线时,就需对余下的信号进行手动布线。

7、自动布线的设计要点包括:

7.1 略微改变设置,试用多种路径布线;

7.2 保持基本规则不变,试用不同的布线层、不同的印制线和间隔宽度以及不同线宽、不同类型的过孔如盲孔、埋孔等,观察这些因素对设计结果有何影响;

7.3让布线工具对那些默认的网络根据需要进行处理;

7.4信号越不重要,自动布线工具对其布线的自由度就越大。

8、布线的整理

如果你所使用的EDA工具软件能够列出信号的布线长度,检查这些数据,你可能会发现一些约束条件很少的信号布线的长度很长。这个问题比较容易处理,通过手动编辑可以缩短信号布线长度和减少过孔数量。在整理过程中,你需要判断出哪些布线合理,哪些布线不合理。同手动布线设计一样,自动布线设计也能在检查过程中进行整理和编辑。

9、电路板的外观

以前的设计常常注意电路板的视觉效果,现在不一样了。自动设计的电路板不比手动设计的美观,但在电子特性上能满足规定的要求,而且设计的完整性能得到保证。
 
 
来源:网络
339 浏览

PCB板内互连高频PCB设计实战秘籍

设备硬件类 功夫熊猫 2017-01-18 10:44 发表了文章 来自相关话题

PCB设计的目标是更小、更快和成本更低。而由于互连点是电路链上最为薄弱的环节,在RF设计中,互连点处的电磁性质是工程设计面临的主要问题,要考察每个互连点并解决存在的问题。

电路板系统的互连包括芯片到电路板、PCB板内互连以及PCB与外部装置之间信号输入/输出等三类互连。本文主要介绍了PCB板内互连进行高频PCB设计的实用技巧总结,相信通过了解本文将对您以后的PCB设计带来便利。
 
PCB设计中芯片与PCB互连对设计来说是重要的,然而芯片与PCB互连的最主要问题是互连密度太高会导致PCB材料的基本结构成为限制互连密度增长的因素。下面为大家分享高频PCB设计的实用技巧。就高频应用而言,PCB板内互连进行高频PCB设计的技巧有:

1、传输线拐角要采用45°角,以降低回损。

2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

3、要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

4、突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺。因为该工艺会导致过孔处产生引线电感。如一个20 层板上的一个过孔用于连接1至3层时,引线电感可影响4到19层。

6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3 维电磁场对电路板的影响。

7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应。此外,这种高可焊涂层所需引线较少,有助于减少环境污染。

8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solderdam)来作阻焊层。
 
 
 
来源:网络 查看全部
PCB设计的目标是更小、更快和成本更低。而由于互连点是电路链上最为薄弱的环节,在RF设计中,互连点处的电磁性质是工程设计面临的主要问题,要考察每个互连点并解决存在的问题。

电路板系统的互连包括芯片到电路板、PCB板内互连以及PCB与外部装置之间信号输入/输出等三类互连。本文主要介绍了PCB板内互连进行高频PCB设计的实用技巧总结,相信通过了解本文将对您以后的PCB设计带来便利。
 
PCB设计中芯片与PCB互连对设计来说是重要的,然而芯片与PCB互连的最主要问题是互连密度太高会导致PCB材料的基本结构成为限制互连密度增长的因素。下面为大家分享高频PCB设计的实用技巧。就高频应用而言,PCB板内互连进行高频PCB设计的技巧有:

1、传输线拐角要采用45°角,以降低回损。

2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

3、要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

4、突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺。因为该工艺会导致过孔处产生引线电感。如一个20 层板上的一个过孔用于连接1至3层时,引线电感可影响4到19层。

6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3 维电磁场对电路板的影响。

7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应。此外,这种高可焊涂层所需引线较少,有助于减少环境污染。

8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solderdam)来作阻焊层。
 
 
 
来源:网络
358 浏览

说说PCB线路板的设计顺序

材料类 功夫熊猫 2017-01-18 10:42 发表了文章 来自相关话题

一般PCB基本设计流程如下:前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。
 
第一:前期准备

1、这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库(这是第一步-很重要)。元件库可以用Protel自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。
原则上先做PCB的元件库,再做SCH的元件库。PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。

PS:注意标准库中的隐藏管脚。之后就是原理图的设计,做好后就准备开始做PCB设计了。

2、制作原理图的库时注意引脚是否连上/输出PCB板后检查一下制作的库。
 
第二:PCB结构设计
这一步根据已经确定的电路板平面尺寸和各项机械定位,在PCB设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、数码管、指示灯、输入、输出、螺丝孔、装配孔等等.并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。

(——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置—空间尺寸,器件放置的面,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”)。

第三:PCB布局

1、布局前确保原理图的正确无误—这很重要!-----非常重要!

原理图绘制完毕检查项目:电源网络、地网络等。

2、布局时要注意器件放置的面(特别是插件等)与器件的摆放方式(直插是卧放还是竖着放),以保证安装的可行性与便利性。

3、布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design->CreateNetlist),之后在PCB图上导入网络表(Design->LoadNets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接,然后就可以对器件布局了。

一般布局按如下原则进行:

布局时应确定好器件放置的面:一般来讲贴片要放同一面,插件要看具体的情况。

①按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);
②完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;
③对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;
④I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;
⑤时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件; 
⑥布局要求要均衡,疏密有序,不能头重脚轻或一头沉。

 第四:布线

布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准.这是在布通之后,认真调整布线,使其能达到最佳的电器性能,接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法.这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。

布线时主要按以下原则进行:
①一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm.对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用);
②预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰.必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合;
③振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;
④尽可能采用45°的折线布线,不可使用90°折线,以减小高频信号的辐射;(要求高的线还要用双弧线);
⑤任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;
⑥关键的线尽量短而粗,并在两边加上保护地;
⑦通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出;
⑧关键信号应预留测试点,以方便调试、生产和维修检测用;
⑨原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

第五:添加泪滴

第六:检查的第一项,依次看Keepout层、top层、bottom层topoverlay、bottomoverlay。

第七:电器规则检查:过孔(0过孔-很是不可思议;0.8分界线)、是否有断开的网表、最小间距(10mil)、短路(对个参数要逐条分析)

第八:电源线与地线的检查—干扰。(滤波电容应靠近芯片)

第九:PCB完成后重新载入网标可检查网表是否有被修改的地方—很奏效。

第十:PCB完成后把核心器件的线核查一下,确保准确无误。
 
 
来源:网络 查看全部
一般PCB基本设计流程如下:前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。
 
第一:前期准备

1、这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库(这是第一步-很重要)。元件库可以用Protel自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。
原则上先做PCB的元件库,再做SCH的元件库。PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。

PS:注意标准库中的隐藏管脚。之后就是原理图的设计,做好后就准备开始做PCB设计了。

2、制作原理图的库时注意引脚是否连上/输出PCB板后检查一下制作的库。
 
第二:PCB结构设计
这一步根据已经确定的电路板平面尺寸和各项机械定位,在PCB设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、数码管、指示灯、输入、输出、螺丝孔、装配孔等等.并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。

(——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置—空间尺寸,器件放置的面,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”)。

第三:PCB布局

1、布局前确保原理图的正确无误—这很重要!-----非常重要!

原理图绘制完毕检查项目:电源网络、地网络等。

2、布局时要注意器件放置的面(特别是插件等)与器件的摆放方式(直插是卧放还是竖着放),以保证安装的可行性与便利性。

3、布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design->CreateNetlist),之后在PCB图上导入网络表(Design->LoadNets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接,然后就可以对器件布局了。

一般布局按如下原则进行:

布局时应确定好器件放置的面:一般来讲贴片要放同一面,插件要看具体的情况。

①按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);
②完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;
③对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;
④I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;
⑤时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件; 
⑥布局要求要均衡,疏密有序,不能头重脚轻或一头沉。

 第四:布线

布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准.这是在布通之后,认真调整布线,使其能达到最佳的电器性能,接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法.这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。

布线时主要按以下原则进行:
①一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm.对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用);
②预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰.必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合;
③振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;
④尽可能采用45°的折线布线,不可使用90°折线,以减小高频信号的辐射;(要求高的线还要用双弧线);
⑤任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;
⑥关键的线尽量短而粗,并在两边加上保护地;
⑦通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出;
⑧关键信号应预留测试点,以方便调试、生产和维修检测用;
⑨原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

第五:添加泪滴

第六:检查的第一项,依次看Keepout层、top层、bottom层topoverlay、bottomoverlay。

第七:电器规则检查:过孔(0过孔-很是不可思议;0.8分界线)、是否有断开的网表、最小间距(10mil)、短路(对个参数要逐条分析)

第八:电源线与地线的检查—干扰。(滤波电容应靠近芯片)

第九:PCB完成后重新载入网标可检查网表是否有被修改的地方—很奏效。

第十:PCB完成后把核心器件的线核查一下,确保准确无误。
 
 
来源:网络
360 浏览

PCB设计:如何减少错误并提高效率

设备硬件类 邓紫棋 2016-12-19 11:12 发表了文章 来自相关话题

设计电路板设计是一项关键而又耗时的任务,出现任何问题都需要工程师逐个网络逐个元件地检查整个设计。可以说电路板设计要求的细心程度不亚于芯片设计。

典型的电路板设计流程由以下步骤组成:






前面三个步骤花的时间最多,因为原理图检查是一个手工过程。想像一个具有1000条甚至更多连线的SoC电路板。人工检查每一根连线是冗长乏味的一项任务。事实上,检查每根连线几乎是不可能的,因而会导致最终电路板出问题,比如错误的连线、悬浮节点等。

原理图捕获阶段一般会面临以下几类问题:

● 下划线错误:比如APLLVDD和APLL_VDD

● 大小写问题:比如VDDE和vdde

● 拼写错误

● 信号短路问题

● ……还有许多

为了避免这些错误,应该有种方法能够在几秒的时间内检查完整个原理图。这个方法可以用原理图仿真来实现,而原理图仿真在目前的电路板设计流程中还很少见到。通过原理图仿真可以在要求的节点观察最终输出结果,因此它能自动检查所有连接问题。

下面通过一个项目实例进行解释。考虑电路板的一个典型框图:





图1

在复杂的电路板设计中,连线数量可能达到数千条,而极少量的更改很可能浪费许多时间去检查。

原理图仿真不仅能节省设计时间,而且能提高电路板质量,并且提高整个流程的效率。

一个典型的待测设备(DUT)具有以下一些信号:





图2

待测设备在经过某些预调整后会有各种各样的信号,并且有各种模块,如稳压器、运放等,用于信号调整。考虑通过稳压器得到的一个供电信号例子:





图3:样例电路板的原理图。

为了验证连接关系并执行整体检查,使用了原理图仿真。原理图仿真由原理图创建、测试平台创建和仿真组成。

在测试平台创建过程中,将有激励信号给到必要的输入端,然后在感兴趣的信号点观察输出结果。
可以通过将探针连接到待观察节点实现上述过程。节点电压和波形可以指示原理图有没有错误。所有信号连接都会得到自动检查。





图4:原理图测试平台和各个节点的仿真值。

让我们看一下上面这张图的一个局部,其中探测的节点和电压清晰可见:






因此在仿真的帮助下,我们可以直接观察结果,确认电路板原理图是否正确。另外,通过仔细调节激励信号或元件值还可以实现设计更改的调查。因此原理图仿真可以节省电路板设计和检查人员的大量时间,并且增加设计正确性的机会。
 
 
 
 
来源:网络 查看全部
设计电路板设计是一项关键而又耗时的任务,出现任何问题都需要工程师逐个网络逐个元件地检查整个设计。可以说电路板设计要求的细心程度不亚于芯片设计。

典型的电路板设计流程由以下步骤组成:

QQ截图20161219110600.png


前面三个步骤花的时间最多,因为原理图检查是一个手工过程。想像一个具有1000条甚至更多连线的SoC电路板。人工检查每一根连线是冗长乏味的一项任务。事实上,检查每根连线几乎是不可能的,因而会导致最终电路板出问题,比如错误的连线、悬浮节点等。

原理图捕获阶段一般会面临以下几类问题:

● 下划线错误:比如APLLVDD和APLL_VDD

● 大小写问题:比如VDDE和vdde

● 拼写错误

● 信号短路问题

● ……还有许多

为了避免这些错误,应该有种方法能够在几秒的时间内检查完整个原理图。这个方法可以用原理图仿真来实现,而原理图仿真在目前的电路板设计流程中还很少见到。通过原理图仿真可以在要求的节点观察最终输出结果,因此它能自动检查所有连接问题。

下面通过一个项目实例进行解释。考虑电路板的一个典型框图:

QQ截图20161219110617.png

图1

在复杂的电路板设计中,连线数量可能达到数千条,而极少量的更改很可能浪费许多时间去检查。

原理图仿真不仅能节省设计时间,而且能提高电路板质量,并且提高整个流程的效率。

一个典型的待测设备(DUT)具有以下一些信号:

QQ截图20161219110629.png

图2

待测设备在经过某些预调整后会有各种各样的信号,并且有各种模块,如稳压器、运放等,用于信号调整。考虑通过稳压器得到的一个供电信号例子:

QQ截图20161219110648.png

图3:样例电路板的原理图。

为了验证连接关系并执行整体检查,使用了原理图仿真。原理图仿真由原理图创建、测试平台创建和仿真组成。

在测试平台创建过程中,将有激励信号给到必要的输入端,然后在感兴趣的信号点观察输出结果。
可以通过将探针连接到待观察节点实现上述过程。节点电压和波形可以指示原理图有没有错误。所有信号连接都会得到自动检查。

QQ截图20161219110703.png

图4:原理图测试平台和各个节点的仿真值。

让我们看一下上面这张图的一个局部,其中探测的节点和电压清晰可见:

QQ截图20161219110715.png


因此在仿真的帮助下,我们可以直接观察结果,确认电路板原理图是否正确。另外,通过仔细调节激励信号或元件值还可以实现设计更改的调查。因此原理图仿真可以节省电路板设计和检查人员的大量时间,并且增加设计正确性的机会。
 
 
 
 
来源:网络
627 浏览

让你的PCB设计更优秀七个设计要点

设备硬件类 回锅肉 2016-11-07 10:27 发表了文章 来自相关话题

导读:PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。随着电子设备越来越复杂,对PCB尺寸的要求也越来越小,与此同时,PCB设计难度也越来越大。今天本文就对此谈谈一款优秀PCB设计中要把握的几大要点。


PCB layout的工作在很多人眼里都是很枯燥无聊的,甚至很多工程师也会这样认为,每天对着板子成千上万条走线,各种各样的封装,重复着拉线的工作。

其实设计人员既要兼顾性能,成本,工艺等各个方面,又要注意到板子布局的合理整齐,所以并没有看上去的那么简单,需要更多的智慧。下面我们就来说说在设计时养成一些好的工作习惯,会让你的设计更合理,生产更容易,性能更好。

一款优秀PCB作品在开始设计之前应该先对设计进行认真的分析以及对工具软件进行认真的设置,做好以下几方面的工作。

(一) 画好原理图

很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。

(二) 好的电路布局技巧

心急的工程师画完原理图,把网表导入PCB后就迫不及待的把器件放好,开始拉线。其实一个好的PCB布局能让你后面的拉线工作变得简单,让你的PCB工作的更好。每一块板子都会有一个信号路径,PCB布局也应该尽量遵循这个信号路径,让信号在板子上可以顺畅的传输,人们都不喜欢走迷宫,信号也一样。如果原理图是按照模块设计的,PCB也一样可以。按照不同的功能模块可以把板子划分为若干区域。模拟数字分开,电源信号分开,发热器件和易感器件分开,体积较大的器件不要太靠近板边,注意射频信号的屏蔽等等……多花一分的时间去优化PCB的布局,就能在拉线的时候节省更多的时间。

(三) 学会设置规则

其实现在不光高级的PCB设计软件需要设置布线规则,一些简单易用的PCB工具同样可以进行规则设置。人脑毕竟不是机器,那就难免会有疏忽有失误。所以把一些容易忽略的问题设置到规则里面,让电脑帮助我们检查,尽量避免犯一些低级错误。另外,完善的规则设置能更好的规范后面的工作。所谓磨刀不误砍柴工,板子的规模越复杂规则设置的重要性越突出。而若干PCB组成系统,各个PCB板子相互连接之间的信号或电源在动作时,例如A板子有电源或信号送到B板子,一定会有等量的电流从地层流回到A板子,这地层上的电流会找阻抗最小的地方流回去。所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法,降低对其它较敏感信号的影响。

(四) Pcb板的布线技术

做PCB时是选用双面板还是多层板,要看最高工作频率和电路系统的复杂程度以及对组装密度的要求来决定。在时钟频率超过200MHZ时最好选用多层板。如果工作频率超过350MHz,最好选用以聚四氟乙烯作为介质层的印制电路板,因为它的高频衰耗要小些,寄生电容要小些,传输速度要快些,还由于Z0较大而省功耗,对印制电路板的走线有如下原则要求

1)所有平行信号线之间要尽量留有较大的间隔,以减少串扰。如果有两条相距较近的信号线,最好在两线之间走一条接地线,这样可以起到屏蔽作用。

2) 设计信号传输线时要避免急拐弯,以防传输线特性阻抗的突变而产生反射,要尽量设计成具有一定尺寸的均匀的圆弧线。

3)印制线的宽度可根据上述微带线和带状线的特性阻抗计算公式计算,印制电路板上的微带线的特性阻抗一般在50~120Ω之间。要想得到大的特性阻抗,线宽必须做得很窄。但很细的线条又不容易制作。综合各种因素考虑,一般选择68Ω左右的阻抗值比较合适,因为选择68Ω的特性阻抗,可以在延迟时间和功耗之间达到最佳平衡。一条50Ω的传输线将消耗更多的功率;较大的阻抗固然可以使消耗功率减少,但会使传输延迟时间憎大。由于负线电容会造成传输延迟时间的增大和特性阻抗的降低。但特性阻抗很低的线段单位长度的本征电容比较大,所以传输延迟时间及特性阻抗受负载电容的影响较小。具有适当端接的传输线的一个重要特征是,分枝短线对线延迟时间应没有什么影响。当Z0为50Ω时。分枝短线的长度必须限制在2.5cm以内。以免出现很大的振铃。

4)对于双面板(或六层板中走四层线)。电路板两面的线要互相垂直,以防止互相感应产主串扰。

5)印制板上若装有大电流器件,如继电器、指示灯、喇叭等,它们的地线最好要分开单独走,以减少地线上的噪声,这些大电流器件的地线应连到插件板和背板上的一个独立的地总线上去,而且这些独立的地线还应该与整个系统的接地点相连接。

6)如果板上有小信号放大器,则放大前的弱信号线要远离强信号线,而且走线要尽可能地短,如有可能还要用地线对其进行屏蔽。

(五)为别人考虑的越多,自己的工作越少

 在进行PCB设计的时候,尽量多考虑一些最终使用者的需求。比如,如果设计的是一块开发板,那么在进行PCB设计的时候就要考虑放置更多的丝印信息, 这样在使用的时候会更方便,不用来回的查找原理图或者找设计人员支持了。如果设计的是一个量产产品,那么就要更多的考虑到生产线上会遇到的问题,同类型的 器件尽量方向一致,器件间距是否合适,板子的工艺边宽度等等。这些问题考虑的越早,越不会影响后面的设计,也可以减少后面支持的工作量和改板的次数。看上 去开始设计上用的时间增加了,实际上是减少了自己后续的工作量。在板子空间信号允许的情况下,尽量放置更多的测试点,提高板子的可测性,这样在后续调试阶 段同样能节省更多的时间,给发现问题提供更多的思路。

(六)细节决定成败

 PCB设计是一个细致的工作,需要的就是细心和耐心。刚开始做设计的新手经常犯的错误就是一些细节错误。器件管脚弄错了,器件封装用错了,管脚顺序画反了等等,有些可以通过飞线来解决,有些可能就让一块板子直接变成了废品。画封装的时候多检查一遍,投板之前把封装打印出来和实际器件比一下,多看一眼,多检查一遍不是强迫症,只是让这些容易犯的低级错误尽量避免。否则设计的再好看的板子,上面布满飞线,也就远谈不上优秀了。

(七)尝试着去做仿真

        仿真往往是PCB设计工程师不愿意去碰的东西。也许有人会说,即使我仿真了,实际制作出来的PCB和仿真结果还是会有区别,那我还去浪费时间做仿真干嘛?我不仿真做出来的板子不是一样工作的好好的?对这种想法很无奈。一两次设计没有问题,不代表以后不会出问题。虽然仿真结果和实际结果有差异,但仿真能表现出正确的变化趋势,根据趋势我们能做出自己的判断。刚开始可能会有困难,对仿真参数仿真模型一头雾水,这都是很正常的。只要开始,慢慢去做,慢慢去积累,就会让你体会到仿真的重要性。在板子完成之前提前判断出容易出问题的位置,提前解决它,避免问题的发生。仿真做的多了,就会从根本上弄明白问题产生的原因,对自己设计能力的提高也会有很大帮助。
 
 
 
来源:网络 查看全部
导读:PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。随着电子设备越来越复杂,对PCB尺寸的要求也越来越小,与此同时,PCB设计难度也越来越大。今天本文就对此谈谈一款优秀PCB设计中要把握的几大要点。


PCB layout的工作在很多人眼里都是很枯燥无聊的,甚至很多工程师也会这样认为,每天对着板子成千上万条走线,各种各样的封装,重复着拉线的工作。

其实设计人员既要兼顾性能,成本,工艺等各个方面,又要注意到板子布局的合理整齐,所以并没有看上去的那么简单,需要更多的智慧。下面我们就来说说在设计时养成一些好的工作习惯,会让你的设计更合理,生产更容易,性能更好。

一款优秀PCB作品在开始设计之前应该先对设计进行认真的分析以及对工具软件进行认真的设置,做好以下几方面的工作。

(一) 画好原理图

很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。

(二) 好的电路布局技巧

心急的工程师画完原理图,把网表导入PCB后就迫不及待的把器件放好,开始拉线。其实一个好的PCB布局能让你后面的拉线工作变得简单,让你的PCB工作的更好。每一块板子都会有一个信号路径,PCB布局也应该尽量遵循这个信号路径,让信号在板子上可以顺畅的传输,人们都不喜欢走迷宫,信号也一样。如果原理图是按照模块设计的,PCB也一样可以。按照不同的功能模块可以把板子划分为若干区域。模拟数字分开,电源信号分开,发热器件和易感器件分开,体积较大的器件不要太靠近板边,注意射频信号的屏蔽等等……多花一分的时间去优化PCB的布局,就能在拉线的时候节省更多的时间。

(三) 学会设置规则

其实现在不光高级的PCB设计软件需要设置布线规则,一些简单易用的PCB工具同样可以进行规则设置。人脑毕竟不是机器,那就难免会有疏忽有失误。所以把一些容易忽略的问题设置到规则里面,让电脑帮助我们检查,尽量避免犯一些低级错误。另外,完善的规则设置能更好的规范后面的工作。所谓磨刀不误砍柴工,板子的规模越复杂规则设置的重要性越突出。而若干PCB组成系统,各个PCB板子相互连接之间的信号或电源在动作时,例如A板子有电源或信号送到B板子,一定会有等量的电流从地层流回到A板子,这地层上的电流会找阻抗最小的地方流回去。所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法,降低对其它较敏感信号的影响。

(四) Pcb板的布线技术

做PCB时是选用双面板还是多层板,要看最高工作频率和电路系统的复杂程度以及对组装密度的要求来决定。在时钟频率超过200MHZ时最好选用多层板。如果工作频率超过350MHz,最好选用以聚四氟乙烯作为介质层的印制电路板,因为它的高频衰耗要小些,寄生电容要小些,传输速度要快些,还由于Z0较大而省功耗,对印制电路板的走线有如下原则要求

1)所有平行信号线之间要尽量留有较大的间隔,以减少串扰。如果有两条相距较近的信号线,最好在两线之间走一条接地线,这样可以起到屏蔽作用。

2) 设计信号传输线时要避免急拐弯,以防传输线特性阻抗的突变而产生反射,要尽量设计成具有一定尺寸的均匀的圆弧线。

3)印制线的宽度可根据上述微带线和带状线的特性阻抗计算公式计算,印制电路板上的微带线的特性阻抗一般在50~120Ω之间。要想得到大的特性阻抗,线宽必须做得很窄。但很细的线条又不容易制作。综合各种因素考虑,一般选择68Ω左右的阻抗值比较合适,因为选择68Ω的特性阻抗,可以在延迟时间和功耗之间达到最佳平衡。一条50Ω的传输线将消耗更多的功率;较大的阻抗固然可以使消耗功率减少,但会使传输延迟时间憎大。由于负线电容会造成传输延迟时间的增大和特性阻抗的降低。但特性阻抗很低的线段单位长度的本征电容比较大,所以传输延迟时间及特性阻抗受负载电容的影响较小。具有适当端接的传输线的一个重要特征是,分枝短线对线延迟时间应没有什么影响。当Z0为50Ω时。分枝短线的长度必须限制在2.5cm以内。以免出现很大的振铃。

4)对于双面板(或六层板中走四层线)。电路板两面的线要互相垂直,以防止互相感应产主串扰。

5)印制板上若装有大电流器件,如继电器、指示灯、喇叭等,它们的地线最好要分开单独走,以减少地线上的噪声,这些大电流器件的地线应连到插件板和背板上的一个独立的地总线上去,而且这些独立的地线还应该与整个系统的接地点相连接。

6)如果板上有小信号放大器,则放大前的弱信号线要远离强信号线,而且走线要尽可能地短,如有可能还要用地线对其进行屏蔽。

(五)为别人考虑的越多,自己的工作越少

 在进行PCB设计的时候,尽量多考虑一些最终使用者的需求。比如,如果设计的是一块开发板,那么在进行PCB设计的时候就要考虑放置更多的丝印信息, 这样在使用的时候会更方便,不用来回的查找原理图或者找设计人员支持了。如果设计的是一个量产产品,那么就要更多的考虑到生产线上会遇到的问题,同类型的 器件尽量方向一致,器件间距是否合适,板子的工艺边宽度等等。这些问题考虑的越早,越不会影响后面的设计,也可以减少后面支持的工作量和改板的次数。看上 去开始设计上用的时间增加了,实际上是减少了自己后续的工作量。在板子空间信号允许的情况下,尽量放置更多的测试点,提高板子的可测性,这样在后续调试阶 段同样能节省更多的时间,给发现问题提供更多的思路。

(六)细节决定成败

 PCB设计是一个细致的工作,需要的就是细心和耐心。刚开始做设计的新手经常犯的错误就是一些细节错误。器件管脚弄错了,器件封装用错了,管脚顺序画反了等等,有些可以通过飞线来解决,有些可能就让一块板子直接变成了废品。画封装的时候多检查一遍,投板之前把封装打印出来和实际器件比一下,多看一眼,多检查一遍不是强迫症,只是让这些容易犯的低级错误尽量避免。否则设计的再好看的板子,上面布满飞线,也就远谈不上优秀了。

(七)尝试着去做仿真

        仿真往往是PCB设计工程师不愿意去碰的东西。也许有人会说,即使我仿真了,实际制作出来的PCB和仿真结果还是会有区别,那我还去浪费时间做仿真干嘛?我不仿真做出来的板子不是一样工作的好好的?对这种想法很无奈。一两次设计没有问题,不代表以后不会出问题。虽然仿真结果和实际结果有差异,但仿真能表现出正确的变化趋势,根据趋势我们能做出自己的判断。刚开始可能会有困难,对仿真参数仿真模型一头雾水,这都是很正常的。只要开始,慢慢去做,慢慢去积累,就会让你体会到仿真的重要性。在板子完成之前提前判断出容易出问题的位置,提前解决它,避免问题的发生。仿真做的多了,就会从根本上弄明白问题产生的原因,对自己设计能力的提高也会有很大帮助。
 
 
 
来源:网络
707 浏览

应对高速PCB设计的时序问题

设备硬件类 善思惟 2016-10-28 10:32 发表了文章 来自相关话题

对于广大PCB设计工程师而言,提到时序问题就感觉比较茫然。看到时序图,更是一头雾水,感觉时序问题特别深奥。其实在平常的设计中最常见的是各种等长关系,网上流传的Layout Guide也介绍了哪些线需要等长。那么是不是做到等长,就满足时序关系了呢?其实不一定,认真思考一下,在有些情况下,费尽心思做的等长反而可能是系统不工作、时序问题出错的罪魁祸首。

在具体介绍之前,大家可以思考一个问题:请列举平常设计中的常见等长要求?

1. 一般具有共性的回答是:PCI总线、CPCI总线和PCIX数据地址总线做到1000mil等长;有些回答甚至是500mil或是更小。

2. 对于SDRAM数据地址总线,这时有两种回答:

全部总线等长,等长要求在200mil以内(数值的回答并不关键。随着频率等因素数值也经常变化,以下的讨论相同。我们不关心具体要求是在多长以内,而是等长的类型)。

分组等长,D0~D7……,如果再问分组和什么选通(Strobe)做等长,答案更是千奇百怪(这个答案是被DDR影响了新的工程师已经很少有机会接触SDRAM了)。

3. DDR1、2、3:

数据线分组等长,DQ0~7+DQS数据组内20mil等长。

地址、控制、命令和CLK等长,范围稍微宽一些(±500mil左右)。

所有DQS和CLK等长,甚至使DDR3。做了Fly-by设计之后,继续要求等长关系。

4. PCIE差分组内等长在5mil以内;

5. PCIE差分组间等长在100mil(或者500mil)以内。

上面这些等长关系在工作中应该都有可能碰到,你是不是也是这么做的?有没有更深入思考过,哪些等长关系是不合理的?可以这么说,绝大部分等长设计都有相对应的时序关系;如果能够看懂相关的时序图,对等长设计将会更加清晰。上面列举等长要求的时候,其实做了分类。相对于高速总线的发展历史,其实就是三个大类:共同时钟的并行总线、源同步时钟的并行总线以及高速串行总线






接下来讨论绿色部分,也就是共同时钟的并行总线时序设计。或许有人会说,这都是过时的设计,并且200M以内的信号没有必要讨论,随便设计就好。其实,现在很多系统还会采用CPCI的构架,PCIX总线还在通信、工控等行业中大量采用。并且,共同时钟系统达到133M以上,时序设计非常困难。可以说如果没有真正理解时序设计的原理,你可能设计一个5G的PCIE2.0系统没有什么问题,而设计一个166M的PCIX系统,则会出现做一个失败一个的情况。系统完全无法运行在预期的频率上,而不得不降频使用。当然,这里面有两个原因:其一是每一代总线发展到瓶颈之后才会进入下一代总线。在各自的瓶颈上,时序裕量非常小,设计极为困难。其二,由于技术的发展,大家更多的关注DDR3,关注高速串行总线,共同时钟系统的研究越来越少,相应的总结文章也不常见。这就带来很多设计问题,也就是上面的回答里面SDRAM分组等长设计错误的原因。

首先,我们如何判断一个系统是共同时钟?方法很简单,找时钟树。确定时钟的关系是判断各种时序系统的关键。共同时钟系统一般有一个外部的晶振或者晶体,然后通过时钟分配器分别连接到系统的驱动端和接收端,由这个外部时钟线来控制系统的时序工作方式




      第一个时钟边沿在驱动端发送数据,第二个时钟边沿在接收端接收数据,为了保证数据的稳定可靠传输,需要满足一定的建立保持时间裕量。共同时钟的时序关系公式为:

     从公式可以直接得出结论,共同时钟的时序等长关系是一个范围,而不是等长。又因为飞行时间的最小时序要求一般都可以满足,也就是第二个公式在很多场合可以忽略不计,这样,PCB设计就只是需要符合第一个公式,结论就是走线越短越好。任何因为并不存在时序要求而做的整个总线绕等长而导致总线布线度增加和串扰增加的设计是错误的,失败的例子也非常多。
 
 
来源:网络 查看全部
对于广大PCB设计工程师而言,提到时序问题就感觉比较茫然。看到时序图,更是一头雾水,感觉时序问题特别深奥。其实在平常的设计中最常见的是各种等长关系,网上流传的Layout Guide也介绍了哪些线需要等长。那么是不是做到等长,就满足时序关系了呢?其实不一定,认真思考一下,在有些情况下,费尽心思做的等长反而可能是系统不工作、时序问题出错的罪魁祸首。

在具体介绍之前,大家可以思考一个问题:请列举平常设计中的常见等长要求?

1. 一般具有共性的回答是:PCI总线、CPCI总线和PCIX数据地址总线做到1000mil等长;有些回答甚至是500mil或是更小。

2. 对于SDRAM数据地址总线,这时有两种回答:

全部总线等长,等长要求在200mil以内(数值的回答并不关键。随着频率等因素数值也经常变化,以下的讨论相同。我们不关心具体要求是在多长以内,而是等长的类型)。

分组等长,D0~D7……,如果再问分组和什么选通(Strobe)做等长,答案更是千奇百怪(这个答案是被DDR影响了新的工程师已经很少有机会接触SDRAM了)。

3. DDR1、2、3:

数据线分组等长,DQ0~7+DQS数据组内20mil等长。

地址、控制、命令和CLK等长,范围稍微宽一些(±500mil左右)。

所有DQS和CLK等长,甚至使DDR3。做了Fly-by设计之后,继续要求等长关系。

4. PCIE差分组内等长在5mil以内;

5. PCIE差分组间等长在100mil(或者500mil)以内。

上面这些等长关系在工作中应该都有可能碰到,你是不是也是这么做的?有没有更深入思考过,哪些等长关系是不合理的?可以这么说,绝大部分等长设计都有相对应的时序关系;如果能够看懂相关的时序图,对等长设计将会更加清晰。上面列举等长要求的时候,其实做了分类。相对于高速总线的发展历史,其实就是三个大类:共同时钟的并行总线、源同步时钟的并行总线以及高速串行总线

QQ截图20161028095213.png


接下来讨论绿色部分,也就是共同时钟的并行总线时序设计。或许有人会说,这都是过时的设计,并且200M以内的信号没有必要讨论,随便设计就好。其实,现在很多系统还会采用CPCI的构架,PCIX总线还在通信、工控等行业中大量采用。并且,共同时钟系统达到133M以上,时序设计非常困难。可以说如果没有真正理解时序设计的原理,你可能设计一个5G的PCIE2.0系统没有什么问题,而设计一个166M的PCIX系统,则会出现做一个失败一个的情况。系统完全无法运行在预期的频率上,而不得不降频使用。当然,这里面有两个原因:其一是每一代总线发展到瓶颈之后才会进入下一代总线。在各自的瓶颈上,时序裕量非常小,设计极为困难。其二,由于技术的发展,大家更多的关注DDR3,关注高速串行总线,共同时钟系统的研究越来越少,相应的总结文章也不常见。这就带来很多设计问题,也就是上面的回答里面SDRAM分组等长设计错误的原因。

首先,我们如何判断一个系统是共同时钟?方法很简单,找时钟树。确定时钟的关系是判断各种时序系统的关键。共同时钟系统一般有一个外部的晶振或者晶体,然后通过时钟分配器分别连接到系统的驱动端和接收端,由这个外部时钟线来控制系统的时序工作方式
QQ截图20161028095227.png

      第一个时钟边沿在驱动端发送数据,第二个时钟边沿在接收端接收数据,为了保证数据的稳定可靠传输,需要满足一定的建立保持时间裕量。共同时钟的时序关系公式为:

     从公式可以直接得出结论,共同时钟的时序等长关系是一个范围,而不是等长。又因为飞行时间的最小时序要求一般都可以满足,也就是第二个公式在很多场合可以忽略不计,这样,PCB设计就只是需要符合第一个公式,结论就是走线越短越好。任何因为并不存在时序要求而做的整个总线绕等长而导致总线布线度增加和串扰增加的设计是错误的,失败的例子也非常多。
 
 
来源:网络
380 浏览

确保PCB设计成功的关键几步!

设备硬件类 广岛之恋 2016-10-26 08:16 发表了文章 来自相关话题

印刷电路板 (PCB) 是电子产品的躯体,最终产品的性能、寿命和可靠性依赖于其所构成的电气系统。如果设计得当,具有高质量电路的产品将具有较低的现场故障率和现场退货率。因此,产品的生产成本将更低,利润更高。为了按时生产高质量的 PCB 板,同时不增加设计时间且不产生代价高昂的返工,必须尽早在设计流程中发现设计和电路完整性问题。

为了把产品快速可靠地推向市场,利用设计工具实现设计流程自动化就显得十分必要,但如何才能确保设计获得成功呢?为了最大程度地提高设计效率和产品质量,应当关注哪些细节?设计工具显然应该直观易用且足够强大,以便克服复杂的设计挑战,但还有哪些事项值得注意?

第一步:不要停留于基本原理图输入

原理图输入对于生成设计的逻辑连接而言至关重要,其必须准确无误、简单易用且与布局集成为一体才能确保设计成功。

简单地输入原理图并将其传送到布局还不够。为了创建符合预期的高质量设计,需要确保使用最佳元件,并且可以执行仿真分析,从而保证设计在交付制造时不会出问题。







第二步:不要忽视库管理库

管理是设计流程的重要组成部分。为了快速选择最佳元件并将其放置在设计中,器件的简易创建和轻松管理就显得十分必要了。

PADS 允许您在一个库中维护所有设计任务,并可实时更新该库,以便于使用并确保设计开发的精确性。您可以通过单个电子表格来访问所有元器件信息,而无需担心数据冗余、多个库或耗时费力的工具开销。






第三步:有效管理设计约束规则

当今的关键高速设计异常复杂,如果没有有效的手段来管理约束规则,则对走线、拓扑和信号延迟等方面的设计、约束和管理将会变得异常困难。为了在第一次迭代中就构建出成功的产品,必须在设计流程的早期设置约束规则,以便设计达到要求的目标。良好的约束规则管理可防止您使用价格高昂或无法采购到的元件,并且最终确保电路板符合性能和制造要求。






第四步:确保您具备所需的布局能力

近年来,PCB 布局设计的复杂度显著高于以前。为了制造更小型、更便携的电子装置,设计的密度不得不提高。此外,工作频率也被提高,这就要求设计人员评估以前可能遭到忽略的电气特性以确保设计可用。为了跟上日益复杂的步伐,设计人员必须具备更广泛的能力,以便定义高级规则集,创建独特的射频形状并实施校正结构来改善设计的总体性能。

布局过程中,智能布局工具有助于创建高效的布置和布线策略。精密布置可减少设计后期的违规情况,让您能够能在少犯错误的情况下更快速地完成项目。






虽然一般使用手动布线来达到真实的设计意图,但将交互式布线与自动布线进行有效的搭配使用有助于满足市场时限要求,并能提高设计质量。自动布线还能帮助应对棘手的任务,如差分对布线、网络调整、制造优化、微过孔和增层技术等。如果事先规划好布线策略,使用自动布线的效率将大为提高。

另一个挑战是现代 PCB 要维护成千上万的网络,这可能会为在设计中的关键区域布线带来困难。避免这个问题的最佳办法是将网络线分成组,以便创建有效的布线策略。创建规划组后,便可标记并过滤网络组,以突出显示需要布线的关键网络。
 
 
 
来源:网络 查看全部
印刷电路板 (PCB) 是电子产品的躯体,最终产品的性能、寿命和可靠性依赖于其所构成的电气系统。如果设计得当,具有高质量电路的产品将具有较低的现场故障率和现场退货率。因此,产品的生产成本将更低,利润更高。为了按时生产高质量的 PCB 板,同时不增加设计时间且不产生代价高昂的返工,必须尽早在设计流程中发现设计和电路完整性问题。

为了把产品快速可靠地推向市场,利用设计工具实现设计流程自动化就显得十分必要,但如何才能确保设计获得成功呢?为了最大程度地提高设计效率和产品质量,应当关注哪些细节?设计工具显然应该直观易用且足够强大,以便克服复杂的设计挑战,但还有哪些事项值得注意?

第一步:不要停留于基本原理图输入

原理图输入对于生成设计的逻辑连接而言至关重要,其必须准确无误、简单易用且与布局集成为一体才能确保设计成功。

简单地输入原理图并将其传送到布局还不够。为了创建符合预期的高质量设计,需要确保使用最佳元件,并且可以执行仿真分析,从而保证设计在交付制造时不会出问题。

640.webp_(13)_.jpg



第二步:不要忽视库管理库

管理是设计流程的重要组成部分。为了快速选择最佳元件并将其放置在设计中,器件的简易创建和轻松管理就显得十分必要了。

PADS 允许您在一个库中维护所有设计任务,并可实时更新该库,以便于使用并确保设计开发的精确性。您可以通过单个电子表格来访问所有元器件信息,而无需担心数据冗余、多个库或耗时费力的工具开销。

640.jpg


第三步:有效管理设计约束规则

当今的关键高速设计异常复杂,如果没有有效的手段来管理约束规则,则对走线、拓扑和信号延迟等方面的设计、约束和管理将会变得异常困难。为了在第一次迭代中就构建出成功的产品,必须在设计流程的早期设置约束规则,以便设计达到要求的目标。良好的约束规则管理可防止您使用价格高昂或无法采购到的元件,并且最终确保电路板符合性能和制造要求。

640_(1).jpg


第四步:确保您具备所需的布局能力

近年来,PCB 布局设计的复杂度显著高于以前。为了制造更小型、更便携的电子装置,设计的密度不得不提高。此外,工作频率也被提高,这就要求设计人员评估以前可能遭到忽略的电气特性以确保设计可用。为了跟上日益复杂的步伐,设计人员必须具备更广泛的能力,以便定义高级规则集,创建独特的射频形状并实施校正结构来改善设计的总体性能。

布局过程中,智能布局工具有助于创建高效的布置和布线策略。精密布置可减少设计后期的违规情况,让您能够能在少犯错误的情况下更快速地完成项目。

640.webp_(14)_.jpg


虽然一般使用手动布线来达到真实的设计意图,但将交互式布线与自动布线进行有效的搭配使用有助于满足市场时限要求,并能提高设计质量。自动布线还能帮助应对棘手的任务,如差分对布线、网络调整、制造优化、微过孔和增层技术等。如果事先规划好布线策略,使用自动布线的效率将大为提高。

另一个挑战是现代 PCB 要维护成千上万的网络,这可能会为在设计中的关键区域布线带来困难。避免这个问题的最佳办法是将网络线分成组,以便创建有效的布线策略。创建规划组后,便可标记并过滤网络组,以突出显示需要布线的关键网络。
 
 
 
来源:网络
973 浏览

(干货)PCB正片和负片的较量,二者有什么区别

设备硬件类 嗡班匝萨埵吽 2016-10-19 10:26 发表了文章 来自相关话题

【导读】印制电路板,PCB( Printed Circuit Board),又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。本文将为你诠释PCB正片和负片的区别,以及PCB负片使用场合。PCB在电子产业这么“火”的原因,在这里你都可以找到答案。

PCB为什么能够广泛使用?

PCB之所以能得到越来越广泛地应用,因为它有很多独特优点,概栝如下。

可高密度化。数十年来,印制板高密度能够随着集成电路集成度提高和安装技术进步而发展着。

高可靠性。通过一系列检查、测试和老化试验等可保证PCB长期(使用期,一般为20年)而可靠地工作着。

可设计性。对PCB各种性能(电气、物理、化学、机械等)要求,可以通过设计标准化、规范化等来实现印制板设计,时间短、效率高。

可生产性。采用现代化管理,可进行标准化、规模(量)化、自动化等生产、保证产品质量一致性。

可测试性。建立了比较完整测试方法、测试标准、各种测试设备与仪器等来检测并鉴定PCB产品合格性和使用寿命。

可组装性。PCB产品既便于各种元件进行标准化组装,又可以进行自动化、规模化批量生产。同时,PCB和各种元件组装部件还可组装形成更大部件、系统,直至整机。

可维护性。由于PCB产品和各种元件组装部件是以标准化设计与规模化生产,因而,这些部件也是标准化。所以,一旦系统发生故障,可以快速、方便、灵活地进行更换,迅速恢服系统工作。当然,还可以举例说得更多些。如使系统小型化、轻量化,信号传输高速化等。

PCB正片和负片的区别

概念:正片和负片是底片的两种不同类型。正片:简单地说就是,在底片上看到什么就有什么。负片:正好相反,看到的就是没有的,看不到的就是有的。




正片和负片只是指一个层的两种不同的显示效果。无论你这一层是设置正片还是负片,作出来的PCB板是一样的。只是在cadence处理的过程中,数据量,DRC检测,以及软件的处理过程不同而已。它们的具体区别如下: 

最终效果的差别

1、PCB正片和负片是最终效果是相反的制造工艺。

PCB正片的效果:凡是画线的地方印刷板的铜被保留,没有画线的地方敷铜被清除。如顶层、底层...的信号层就是正片。

PCB负片的效果:凡是画线的地方印刷板的敷铜被清除,没有画线的地方敷铜反而被保留。Internal Planes层(内部电源/接地层)(简称内电层),用于布置电源线和地线。放置在这些层面上的走线或其他对象是无铜的区域,也即这个工作层是负片的。

输出工艺的差别
 
2、负片:一般是我们讲的tenting制程,其使用的药液为酸性蚀刻





负片是因为底片制作出来后,要的线路或铜面是透明的,而不要的部份则为黑色或棕色的,经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,于是在蚀刻制程中仅咬蚀干膜冲掉部份的铜箔(底片黑色或棕色的部份),而保留干膜未被冲掉属于我们要的线路(底片透明的部份),去膜以后就留下了我们所需要的线路,在这种制程中膜对孔要掩盖,其曝光的要求和对膜的要求稍高一些,但其制造的流程速度快。

正片:一般是我们讲的pattern制程,其使用的药液为碱性蚀刻
 
正片若以底片来看,要的线路或铜面是黑色或棕色的,而不要部份则为透明的,同样地经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,接着是镀锡铅的制程,把锡铅镀在前一制程(显影)干膜冲掉的铜面上,然后作去膜的动作(去除因光照而硬化的干膜),而在下一制程蚀刻中,用碱性药水咬掉没有锡铅保护的铜箔(底片透明的部份),剩下的就是我们要的线路(底片黑色或棕色的部份)。

注意*:在实际布线上,电源层使用负片,会带来很多便捷,但是有的公司会要求电源层也用正片来处理,因为负片在的逻辑与平时布线相反,如果没有划分好负片网络很可能出现死铜,这对整个板子信号会带来影响的。尤其是电源层出现多个电源,在整个板子有 1,2V,2.5V,3.3V,5V 数模混合电源,容易导致电源分割失误、在分割时采用 P+L 划分不同网络的区域。

应用好处及应用场合
 
3、负片就是为了减小文件尺寸减小计算量用的。有铜的地方不显示,没铜的地方显示。这个在地层电源层能显著减小数据量和电脑显示负担。不过现在的电脑配置对这点工作量已经不在话下了,我觉得不太推荐负片使用,容易出错。焊盘没设计好有可能短路什么的。

电源分割方便的话,方法有很多,正片也可以用其他方法很方便的进行电源分割,没必要一定用负片。

pcb设计时,如何区分正片和负片?






但是,不管是正片还是负片,在设置焊盘时都要注意——

在制作pad时,最好把flash做好,把三个参数全部设置上,无论你做正片还是负片,都是一劳永逸。如果不用负片,那么,可以不设置flash。

在做焊盘时,如果内层不做花焊盘,那么在多层板电源层是负片情况下就不会有花焊盘出现,必须前面做了花焊盘才会有。反过来,如果前期做了,但出图的时候不想要花焊盘,可以直接在art work负片中设置去掉花焊盘。

当然电源层也可以采用正片直接铺铜的方式,铺洞时设置孔的连着方式等参数,也可达到花焊盘的效果,这样在做焊盘的时候不做花焊盘也可以通过设置孔的连接方式达到花焊盘的效果。设置方法:shape—global dynamic parameter-Thermal relief connects 里进行相应设置。

每个管脚可以拥有所有类型的pad:

Regular

thermal relief

anti-pad and custom shapes


这些pad将应用于设计中的各个走线层。对于artwork层中的负片,allegro将使用thermal relief和anti-pad。而对于正片,allegro只使用Regular pad。这些工作是allegro在生成光绘文件时,自动选择的。

每一层中都有可能指定Regular Thermal relief及Anti-pad是出于以下考虑:在出光绘文件时,当该层中与该焊盘相连通的是一般走线,那么,在正片布线层中,Allegro将决定使用Regular焊盘。如果是敷铜,则使用Thermal relief焊盘,如果不能与之相连,则使用Anti-pad。具体使用由Allegro决定。
 
 
来源:网络 查看全部
【导读】印制电路板,PCB( Printed Circuit Board),又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。本文将为你诠释PCB正片和负片的区别,以及PCB负片使用场合。PCB在电子产业这么“火”的原因,在这里你都可以找到答案。

PCB为什么能够广泛使用?

PCB之所以能得到越来越广泛地应用,因为它有很多独特优点,概栝如下。

可高密度化。数十年来,印制板高密度能够随着集成电路集成度提高和安装技术进步而发展着。

高可靠性。通过一系列检查、测试和老化试验等可保证PCB长期(使用期,一般为20年)而可靠地工作着。

可设计性。对PCB各种性能(电气、物理、化学、机械等)要求,可以通过设计标准化、规范化等来实现印制板设计,时间短、效率高。

可生产性。采用现代化管理,可进行标准化、规模(量)化、自动化等生产、保证产品质量一致性。

可测试性。建立了比较完整测试方法、测试标准、各种测试设备与仪器等来检测并鉴定PCB产品合格性和使用寿命。

可组装性。PCB产品既便于各种元件进行标准化组装,又可以进行自动化、规模化批量生产。同时,PCB和各种元件组装部件还可组装形成更大部件、系统,直至整机。

可维护性。由于PCB产品和各种元件组装部件是以标准化设计与规模化生产,因而,这些部件也是标准化。所以,一旦系统发生故障,可以快速、方便、灵活地进行更换,迅速恢服系统工作。当然,还可以举例说得更多些。如使系统小型化、轻量化,信号传输高速化等。

PCB正片和负片的区别

概念:正片和负片是底片的两种不同类型。正片:简单地说就是,在底片上看到什么就有什么。负片:正好相反,看到的就是没有的,看不到的就是有的。
0_(1).gif

正片和负片只是指一个层的两种不同的显示效果。无论你这一层是设置正片还是负片,作出来的PCB板是一样的。只是在cadence处理的过程中,数据量,DRC检测,以及软件的处理过程不同而已。它们的具体区别如下: 

最终效果的差别

1、PCB正片和负片是最终效果是相反的制造工艺。

PCB正片的效果:凡是画线的地方印刷板的铜被保留,没有画线的地方敷铜被清除。如顶层、底层...的信号层就是正片。

PCB负片的效果:凡是画线的地方印刷板的敷铜被清除,没有画线的地方敷铜反而被保留。Internal Planes层(内部电源/接地层)(简称内电层),用于布置电源线和地线。放置在这些层面上的走线或其他对象是无铜的区域,也即这个工作层是负片的。

输出工艺的差别
 
2、负片:一般是我们讲的tenting制程,其使用的药液为酸性蚀刻

640.webp_(17)_.jpg

负片是因为底片制作出来后,要的线路或铜面是透明的,而不要的部份则为黑色或棕色的,经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,于是在蚀刻制程中仅咬蚀干膜冲掉部份的铜箔(底片黑色或棕色的部份),而保留干膜未被冲掉属于我们要的线路(底片透明的部份),去膜以后就留下了我们所需要的线路,在这种制程中膜对孔要掩盖,其曝光的要求和对膜的要求稍高一些,但其制造的流程速度快。

正片:一般是我们讲的pattern制程,其使用的药液为碱性蚀刻
 
正片若以底片来看,要的线路或铜面是黑色或棕色的,而不要部份则为透明的,同样地经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,接着是镀锡铅的制程,把锡铅镀在前一制程(显影)干膜冲掉的铜面上,然后作去膜的动作(去除因光照而硬化的干膜),而在下一制程蚀刻中,用碱性药水咬掉没有锡铅保护的铜箔(底片透明的部份),剩下的就是我们要的线路(底片黑色或棕色的部份)。

注意*:在实际布线上,电源层使用负片,会带来很多便捷,但是有的公司会要求电源层也用正片来处理,因为负片在的逻辑与平时布线相反,如果没有划分好负片网络很可能出现死铜,这对整个板子信号会带来影响的。尤其是电源层出现多个电源,在整个板子有 1,2V,2.5V,3.3V,5V 数模混合电源,容易导致电源分割失误、在分割时采用 P+L 划分不同网络的区域。

应用好处及应用场合
 
3、负片就是为了减小文件尺寸减小计算量用的。有铜的地方不显示,没铜的地方显示。这个在地层电源层能显著减小数据量和电脑显示负担。不过现在的电脑配置对这点工作量已经不在话下了,我觉得不太推荐负片使用,容易出错。焊盘没设计好有可能短路什么的。

电源分割方便的话,方法有很多,正片也可以用其他方法很方便的进行电源分割,没必要一定用负片。

pcb设计时,如何区分正片和负片?

0_(2).gif


但是,不管是正片还是负片,在设置焊盘时都要注意——

在制作pad时,最好把flash做好,把三个参数全部设置上,无论你做正片还是负片,都是一劳永逸。如果不用负片,那么,可以不设置flash。

在做焊盘时,如果内层不做花焊盘,那么在多层板电源层是负片情况下就不会有花焊盘出现,必须前面做了花焊盘才会有。反过来,如果前期做了,但出图的时候不想要花焊盘,可以直接在art work负片中设置去掉花焊盘。

当然电源层也可以采用正片直接铺铜的方式,铺洞时设置孔的连着方式等参数,也可达到花焊盘的效果,这样在做焊盘的时候不做花焊盘也可以通过设置孔的连接方式达到花焊盘的效果。设置方法:shape—global dynamic parameter-Thermal relief connects 里进行相应设置。

每个管脚可以拥有所有类型的pad:

Regular

thermal relief

anti-pad and custom shapes


这些pad将应用于设计中的各个走线层。对于artwork层中的负片,allegro将使用thermal relief和anti-pad。而对于正片,allegro只使用Regular pad。这些工作是allegro在生成光绘文件时,自动选择的。

每一层中都有可能指定Regular Thermal relief及Anti-pad是出于以下考虑:在出光绘文件时,当该层中与该焊盘相连通的是一般走线,那么,在正片布线层中,Allegro将决定使用Regular焊盘。如果是敷铜,则使用Thermal relief焊盘,如果不能与之相连,则使用Anti-pad。具体使用由Allegro决定。
 
 
来源:网络
674 浏览

【知识分享】详解PCB设计中各层的意义

电气控制类 我是谁 2016-09-10 21:55 发表了文章 来自相关话题

      1、信号层(Signal Layers)

      Altium Designer最多可提供32个信号层,包括顶层(Top Layer)、底层(Bottom Layer)和中间层(Mid-Layer)。各层之间可通过通孔(Via)、盲孔(Blind Via)和埋孔(Buried Via)实现互相连接。






      (1)、顶层信号层(Top Layer)

      也称元件层,主要用来放置元器件,对于双层板和多层板可以用来布置导线或覆铜。

      (2)、底层信号层(Bottom Layer)

      也称焊接层,主要用于布线及焊接,对于双层板和多层板可以用来放置元器件。

      (3)中间信号层(Mid-Layers)

      最多可有30层,在多层板中用于布置信号线,这里不包括电源线和地线。

     2、内部电源层(Internal Planes)

      通常简称为内电层,仅在多层板中出现,PCB板层数一般是指信号层和内电层相加的总和数。与信号层相同,内电层与内电层之间、内电层与信号层之间可通过通孔、盲孔和埋孔实现互相连接。






      3、丝印层(Silkscreen Layers)

      一块PCB板最多可以有2个丝印层,分别是顶层丝印层(Top Overlay)和底层丝印层(Bottom Overlay),一般为白色,主要用于放置印制信息,如元器件的轮廓和标注,各种注释字符等,方便PCB的元器件焊接和电路检查。

      (1)顶层丝印层(Top Overlay)

      用于标注元器件的投影轮廓、元器件的标号、标称值或型号以及各种注释字符。

      (2)底层丝印层(Bottom Overlay)

      与顶层丝印层相同,若所有标注在顶层丝印层都已经包含,底层丝印层可关闭。

      4、机械层(Mechanical Layers)

      机械层,一般用于放置有关制板和装配方法的指示性信息,如PCB的外形尺寸、尺寸标记、数据资料、过孔信息、装配说明等信息。这些信息因设计公司或PCB制造厂家的要求而有所不同,下面举例说明我们的常用方法。

      Mechanical 1:一般用来绘制PCB的边框,作为其机械外形,故也称为外形层;

      Mechanical 2:我们用来放置PCB加工工艺要求表格,包括尺寸、板材、板层等信息;

      Mechanical 13 & Mechanical 15:ETM库中大多数元器件的本体尺寸信息,包括元器件的三维模型;为了页面的简洁,该层默认未显示;

      Mechanical 16:ETM库中大多数元器件的占位面积信息,在项目早期可用来估算PCB尺寸;为了页面的简洁,该层默认未显示,而且颜色为黑色。

      5、遮蔽层(Mask Layers)

      Altium Designer提供了阻焊层(Solder Mask)和锡膏层(Paste Mask)两种类型的遮蔽层(Mask Layers),在其中分别有顶层和底层两层,这里就不详细介绍了。
文章来源于网络 查看全部

3.PNG


      1、信号层(Signal Layers)

      Altium Designer最多可提供32个信号层,包括顶层(Top Layer)、底层(Bottom Layer)和中间层(Mid-Layer)。各层之间可通过通孔(Via)、盲孔(Blind Via)和埋孔(Buried Via)实现互相连接。

3.1_.PNG


      (1)、顶层信号层(Top Layer)

      也称元件层,主要用来放置元器件,对于双层板和多层板可以用来布置导线或覆铜。

      (2)、底层信号层(Bottom Layer)

      也称焊接层,主要用于布线及焊接,对于双层板和多层板可以用来放置元器件。

      (3)中间信号层(Mid-Layers)

      最多可有30层,在多层板中用于布置信号线,这里不包括电源线和地线。

     2、内部电源层(Internal Planes)

      通常简称为内电层,仅在多层板中出现,PCB板层数一般是指信号层和内电层相加的总和数。与信号层相同,内电层与内电层之间、内电层与信号层之间可通过通孔、盲孔和埋孔实现互相连接。

3.2_.PNG


      3、丝印层(Silkscreen Layers)

      一块PCB板最多可以有2个丝印层,分别是顶层丝印层(Top Overlay)和底层丝印层(Bottom Overlay),一般为白色,主要用于放置印制信息,如元器件的轮廓和标注,各种注释字符等,方便PCB的元器件焊接和电路检查。

      (1)顶层丝印层(Top Overlay)

      用于标注元器件的投影轮廓、元器件的标号、标称值或型号以及各种注释字符。

      (2)底层丝印层(Bottom Overlay)

      与顶层丝印层相同,若所有标注在顶层丝印层都已经包含,底层丝印层可关闭。

      4、机械层(Mechanical Layers)

      机械层,一般用于放置有关制板和装配方法的指示性信息,如PCB的外形尺寸、尺寸标记、数据资料、过孔信息、装配说明等信息。这些信息因设计公司或PCB制造厂家的要求而有所不同,下面举例说明我们的常用方法。

      Mechanical 1:一般用来绘制PCB的边框,作为其机械外形,故也称为外形层;

      Mechanical 2:我们用来放置PCB加工工艺要求表格,包括尺寸、板材、板层等信息;

      Mechanical 13 & Mechanical 15:ETM库中大多数元器件的本体尺寸信息,包括元器件的三维模型;为了页面的简洁,该层默认未显示;

      Mechanical 16:ETM库中大多数元器件的占位面积信息,在项目早期可用来估算PCB尺寸;为了页面的简洁,该层默认未显示,而且颜色为黑色。

      5、遮蔽层(Mask Layers)

      Altium Designer提供了阻焊层(Solder Mask)和锡膏层(Paste Mask)两种类型的遮蔽层(Mask Layers),在其中分别有顶层和底层两层,这里就不详细介绍了。
文章来源于网络
425 浏览

在PCB设计中,射频电路和数字电路如何和谐共处?

设备硬件类 朱迪 2017-03-23 13:08 发表了文章 来自相关话题

单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。





1、数字电路与模拟电路的潜在矛盾

如果模拟电路(射频) 和数字电路(微控制器) 单独工作可能各自工作良好,但是一旦将两者放在同一块电路板上,使用同一个电源供电一起工作,整个系统很可能就会不稳定。这主要是因为数字信号频繁的在地和正电源(大小3 V) 之间摆动,而且周期特别短,常常是ns 级的。由于较大的振幅和较小的切换时间,使得这些数字信号包含大量的且独立于切换频率的高频成分。而在模拟部分,从天线调谐回路传到无线设备接收部分的信号一般小于1μV。因此数字信号与射频信号之间的差别将达到10-6(120 dB) 。显然,如果数字信号与射频信号不能很好的分离,微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。

2 、RF电路和数字电路做在同一PCB上的常见问题

不能充分的隔离敏感线路和噪声信号线是常常出现的问题。如上所述,数字信号具有高的摆幅并包含大量高频谐波。如果PCB 板上的数字信号布线邻近敏感的模拟信号,高频谐波可能会耦合过去。RF 器件的最敏感节点通常为锁相环( PLL) 的环路滤波电路,外接的压控振荡器(VCO) 电感,晶振基准信号和天线端子,电路的这些部分应该特别仔细处理。

(1) 供电电源噪声
由于输入/ 输出信号有几V 的摆幅,数字电路对于电源噪声(小于50 mV) 一般可以接受。而模拟电路对于电源噪声却相当敏感,尤其是对毛刺电压和其他高频谐波。因此,在包含RF(或其他模拟) 电路的PCB 板上的电源线布线必须比在普通数字电路板上布线更加仔细,应避免采用自动布线。同时也应注意到,微控制器(或其他数字电路) 会在每个内部时钟周期内短时间突然吸入大部分电流,这是由于现代微控制器都采用CMOS 工艺设计。因此,假设一个微控制器以1 MHz 的内部时钟频率运行,它将以此频率从电源提取(脉冲) 电流,如果不采取合适的电源去耦,必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF 部分的电源引脚,严重的可能导致工作失效,因此必须保证将模拟电源线与数字电路区域隔开。

(2) 不合理的地线
RF 电路板应该总是布有与电源负极相连的地线层,如果处理不当,可能产生一些奇怪的现象。对于一个数字电路设计者来说这也许难于理解,因为即使没有地线层,大多数数字电路功能也表现良好。而在RF 频段,即使一根很短的线也会如电感一样作用。粗略计算,每mm 长度的电感量约为1 nH , 434 MHz 时10 mmPCB 线路的感抗约为27 Ω。如果不采用地线层,大多数地线将会较长,电路将无法保证设计特性。

(3) 天线对其他模拟部分的辐射
在包含射频和其他部分的电路中,这一点经常被忽略。除了RF 部分,板上通常还有其他模拟电路。例如,许多微控制器内置模数转换器(ADC) 用于测量模拟输入以及电池电压或其他参数。如果射频发送器的天线位于此PCB 附近(或就在此PCB 上) ,发出的高频信号可能会到达ADC 的模拟输入端。不要忘记任何电路线路都可能如天线一样发出或接收RF 信号。如果ADC 输入端处理不合理,RF 信号可能在ADC输入的ESD二极管内自激,从而引起ADC 的偏差。

3、RF 电路和数字电路做在同块PCB 上的解决方案

以下给出在大多数RF 应用中的一些通用设计和布线策略。然而,遵循实际应用中RF 器件的布线建议更为重要。

(1) 一个可靠的地线层面
当设计有RF 元件的PCB 时,应该总是采用一个可靠的地线层。其目的是在电路中建立一个有效的0 V 电位点,使所有的器件容易去耦。供电电源的0 V 端子应直接连接在此地线层。由于地线层的低阻抗,已被去耦的两个节点间将不会产生信号耦合。对于板上多个信号幅值可能相差120 dB ,这一点非常重要。在表面贴装的PCB 上,所有信号布线在元件安装面的同一面,地线层则在其反面。理想的地线层应覆盖整个PCB ( 除了天线PCB 下方) 。如果采用两层以上的PCB ,地线层应放置在邻近信号层的层上(如元件面的下一层) 。另一个好方法是将信号布线层的空余部分也用地线平面填充,这些地线平面必须通过多个过孔与主地线层面连接。需要注意的是:由于接地点的存在会引起旁边的电感特性改变,因此选择电感值和布置电感是必须仔细考虑的。

(2) 缩短与地线层的连接距离
所有对地线层的连接必须尽量短,接地过孔应放置在(或非常接近) 元件的焊盘处。决不要让两个地信号共用一个接地过孔,这可能导致由于过孔连接阻抗在两个焊盘之间产生串扰。

(3) RF 去耦
去耦电容应该放置在尽可能靠近引脚的位置,每个需要去耦的引脚处都应采用电容去耦。采用高品质的陶瓷电容,介电类型最好是“ NPO” , “ X7R” 在大多数应用中也能较好工作。理想的选择电容值应使其串联谐振等于信号频率。例如434 MHz 时,SMD 贴装的100 p F 电容将良好工作,此频率时,电容的容抗约为4 Ω,过孔的感抗也在同样范围。串联的电容和过孔对于信号频率形成一个陷波滤波器,使之能有效的去耦。868 MHz 时,33 p F 电容是一个理想的选择。除了RF 去耦的小值电容,一个大值电容也应放置在电源线路上去耦低频,可选择一个2. 2 μF陶瓷或10μF 的钽电容。

(4) 电源的星形布线
星形布线是模拟电路设计中众所周知的技巧(如图1所示) 。星形布线———电路板上各模块具有各自的来自公共供电电源点的电源线路。在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。这是一个隔开来自数字部分和来自RF 部分电源噪声的有效方法。如果将有严重噪声的模块置于同一电路板上,可以将电感(磁珠) 或小阻值电阻(10 Ω) 串联在电源线和模块之间,并且必须采用至少10 μF 的钽电容作这些模块的电源去耦。这样的模块如RS 232 驱动器或开关电源稳压器。






(5) 合理安排PCB 布局
为减小来自噪声模块及周边模拟部分的干扰,各电路模块在板上的布局是重要的。应总是将敏感的模块( RF部分和天线) 远离噪声模块(微控制器和RS 232 驱动器)以避免干扰。

(6) 屏蔽RF 信号对其他模拟部分的影响
如上所述,RF 信号在发送时会对其他敏感模拟电路模块如ADC 造成干扰。大多数问题发生在较低的工作频段(如27 MHz) 以及高的功率输出水平。用RF 去耦电容(100p F) 连接到地来去耦敏感点是一个好的设计习惯。

(7) 在板环形天线的特别考虑
天线可以整体做在PCB 上。对比传统的鞭状天线,不仅节省空间和生产成本,机构上也更稳固可靠。惯例中,环形天线(loop antenna) 设计应用于相对较窄的带宽,这有助于抑制不需要的强信号以免干扰接收器。应注意到环形天线(正如所有其他天线) 可能收到由附近噪声信号线路容性耦合的噪声。它会干扰接收器,也可能影响发送器的调制。因此在天线附近一定不要布数字信号线路,并建议在天线周围保持自由空间。接近天线的任何物体都将构成调谐网络的一部分,而导致天线调谐偏离预想的频点,使收发辐射范围(距离) 减小。对于所有的各类天线必须注意这一事实,电路板的外壳(外围包装) 也可能影响天线调谐。同时应注意去除天线面积处的地线层面,否则天线不能有效工作。

(8) 电路板的连接
如果用电缆将RF 电路板连接到外部数字电路,应使用双绞线缆。每一根信号线必须和GND 线双绞在一起(DIN/ GND , DOUT/ GND , CS/ GND , PWR _ UP/ GND) 。切记将RF 电路板和数字应用电路板用双绞线缆的GND线连接起来,线缆长度应尽量短。给RF 电路板供电的线路也必须与GND 双绞(VDD/ GND) 。

结论
迅速发展的射频集成电路为从事无线数字音频、视频数据传输系统,无线遥控、遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等设计的工程技术人员解决无线应用的瓶颈提供了最大的可能。同时,射频电路的设计又要求设计者具有一定的实践经验和工程设计能力。本文是笔者在实际开发中总结的经验,希望可以帮助众多射频集成电路开发者缩短开发周期,避免走不必要的弯路,节省人力和财力。
 
 
来源:网络 查看全部
单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。

QQ截图20170323130728.png

1、数字电路与模拟电路的潜在矛盾

如果模拟电路(射频) 和数字电路(微控制器) 单独工作可能各自工作良好,但是一旦将两者放在同一块电路板上,使用同一个电源供电一起工作,整个系统很可能就会不稳定。这主要是因为数字信号频繁的在地和正电源(大小3 V) 之间摆动,而且周期特别短,常常是ns 级的。由于较大的振幅和较小的切换时间,使得这些数字信号包含大量的且独立于切换频率的高频成分。而在模拟部分,从天线调谐回路传到无线设备接收部分的信号一般小于1μV。因此数字信号与射频信号之间的差别将达到10-6(120 dB) 。显然,如果数字信号与射频信号不能很好的分离,微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。

2 、RF电路和数字电路做在同一PCB上的常见问题

不能充分的隔离敏感线路和噪声信号线是常常出现的问题。如上所述,数字信号具有高的摆幅并包含大量高频谐波。如果PCB 板上的数字信号布线邻近敏感的模拟信号,高频谐波可能会耦合过去。RF 器件的最敏感节点通常为锁相环( PLL) 的环路滤波电路,外接的压控振荡器(VCO) 电感,晶振基准信号和天线端子,电路的这些部分应该特别仔细处理。

(1) 供电电源噪声
由于输入/ 输出信号有几V 的摆幅,数字电路对于电源噪声(小于50 mV) 一般可以接受。而模拟电路对于电源噪声却相当敏感,尤其是对毛刺电压和其他高频谐波。因此,在包含RF(或其他模拟) 电路的PCB 板上的电源线布线必须比在普通数字电路板上布线更加仔细,应避免采用自动布线。同时也应注意到,微控制器(或其他数字电路) 会在每个内部时钟周期内短时间突然吸入大部分电流,这是由于现代微控制器都采用CMOS 工艺设计。因此,假设一个微控制器以1 MHz 的内部时钟频率运行,它将以此频率从电源提取(脉冲) 电流,如果不采取合适的电源去耦,必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF 部分的电源引脚,严重的可能导致工作失效,因此必须保证将模拟电源线与数字电路区域隔开。

(2) 不合理的地线
RF 电路板应该总是布有与电源负极相连的地线层,如果处理不当,可能产生一些奇怪的现象。对于一个数字电路设计者来说这也许难于理解,因为即使没有地线层,大多数数字电路功能也表现良好。而在RF 频段,即使一根很短的线也会如电感一样作用。粗略计算,每mm 长度的电感量约为1 nH , 434 MHz 时10 mmPCB 线路的感抗约为27 Ω。如果不采用地线层,大多数地线将会较长,电路将无法保证设计特性。

(3) 天线对其他模拟部分的辐射
在包含射频和其他部分的电路中,这一点经常被忽略。除了RF 部分,板上通常还有其他模拟电路。例如,许多微控制器内置模数转换器(ADC) 用于测量模拟输入以及电池电压或其他参数。如果射频发送器的天线位于此PCB 附近(或就在此PCB 上) ,发出的高频信号可能会到达ADC 的模拟输入端。不要忘记任何电路线路都可能如天线一样发出或接收RF 信号。如果ADC 输入端处理不合理,RF 信号可能在ADC输入的ESD二极管内自激,从而引起ADC 的偏差。

3、RF 电路和数字电路做在同块PCB 上的解决方案

以下给出在大多数RF 应用中的一些通用设计和布线策略。然而,遵循实际应用中RF 器件的布线建议更为重要。

(1) 一个可靠的地线层面
当设计有RF 元件的PCB 时,应该总是采用一个可靠的地线层。其目的是在电路中建立一个有效的0 V 电位点,使所有的器件容易去耦。供电电源的0 V 端子应直接连接在此地线层。由于地线层的低阻抗,已被去耦的两个节点间将不会产生信号耦合。对于板上多个信号幅值可能相差120 dB ,这一点非常重要。在表面贴装的PCB 上,所有信号布线在元件安装面的同一面,地线层则在其反面。理想的地线层应覆盖整个PCB ( 除了天线PCB 下方) 。如果采用两层以上的PCB ,地线层应放置在邻近信号层的层上(如元件面的下一层) 。另一个好方法是将信号布线层的空余部分也用地线平面填充,这些地线平面必须通过多个过孔与主地线层面连接。需要注意的是:由于接地点的存在会引起旁边的电感特性改变,因此选择电感值和布置电感是必须仔细考虑的。

(2) 缩短与地线层的连接距离
所有对地线层的连接必须尽量短,接地过孔应放置在(或非常接近) 元件的焊盘处。决不要让两个地信号共用一个接地过孔,这可能导致由于过孔连接阻抗在两个焊盘之间产生串扰。

(3) RF 去耦
去耦电容应该放置在尽可能靠近引脚的位置,每个需要去耦的引脚处都应采用电容去耦。采用高品质的陶瓷电容,介电类型最好是“ NPO” , “ X7R” 在大多数应用中也能较好工作。理想的选择电容值应使其串联谐振等于信号频率。例如434 MHz 时,SMD 贴装的100 p F 电容将良好工作,此频率时,电容的容抗约为4 Ω,过孔的感抗也在同样范围。串联的电容和过孔对于信号频率形成一个陷波滤波器,使之能有效的去耦。868 MHz 时,33 p F 电容是一个理想的选择。除了RF 去耦的小值电容,一个大值电容也应放置在电源线路上去耦低频,可选择一个2. 2 μF陶瓷或10μF 的钽电容。

(4) 电源的星形布线
星形布线是模拟电路设计中众所周知的技巧(如图1所示) 。星形布线———电路板上各模块具有各自的来自公共供电电源点的电源线路。在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。这是一个隔开来自数字部分和来自RF 部分电源噪声的有效方法。如果将有严重噪声的模块置于同一电路板上,可以将电感(磁珠) 或小阻值电阻(10 Ω) 串联在电源线和模块之间,并且必须采用至少10 μF 的钽电容作这些模块的电源去耦。这样的模块如RS 232 驱动器或开关电源稳压器。

QQ截图20170323130807.png


(5) 合理安排PCB 布局
为减小来自噪声模块及周边模拟部分的干扰,各电路模块在板上的布局是重要的。应总是将敏感的模块( RF部分和天线) 远离噪声模块(微控制器和RS 232 驱动器)以避免干扰。

(6) 屏蔽RF 信号对其他模拟部分的影响
如上所述,RF 信号在发送时会对其他敏感模拟电路模块如ADC 造成干扰。大多数问题发生在较低的工作频段(如27 MHz) 以及高的功率输出水平。用RF 去耦电容(100p F) 连接到地来去耦敏感点是一个好的设计习惯。

(7) 在板环形天线的特别考虑
天线可以整体做在PCB 上。对比传统的鞭状天线,不仅节省空间和生产成本,机构上也更稳固可靠。惯例中,环形天线(loop antenna) 设计应用于相对较窄的带宽,这有助于抑制不需要的强信号以免干扰接收器。应注意到环形天线(正如所有其他天线) 可能收到由附近噪声信号线路容性耦合的噪声。它会干扰接收器,也可能影响发送器的调制。因此在天线附近一定不要布数字信号线路,并建议在天线周围保持自由空间。接近天线的任何物体都将构成调谐网络的一部分,而导致天线调谐偏离预想的频点,使收发辐射范围(距离) 减小。对于所有的各类天线必须注意这一事实,电路板的外壳(外围包装) 也可能影响天线调谐。同时应注意去除天线面积处的地线层面,否则天线不能有效工作。

(8) 电路板的连接
如果用电缆将RF 电路板连接到外部数字电路,应使用双绞线缆。每一根信号线必须和GND 线双绞在一起(DIN/ GND , DOUT/ GND , CS/ GND , PWR _ UP/ GND) 。切记将RF 电路板和数字应用电路板用双绞线缆的GND线连接起来,线缆长度应尽量短。给RF 电路板供电的线路也必须与GND 双绞(VDD/ GND) 。

结论
迅速发展的射频集成电路为从事无线数字音频、视频数据传输系统,无线遥控、遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等设计的工程技术人员解决无线应用的瓶颈提供了最大的可能。同时,射频电路的设计又要求设计者具有一定的实践经验和工程设计能力。本文是笔者在实际开发中总结的经验,希望可以帮助众多射频集成电路开发者缩短开发周期,避免走不必要的弯路,节省人力和财力。
 
 
来源:网络
397 浏览

PCB设计经验「精辟」

设备硬件类 冲上云霄 2017-03-08 18:49 发表了文章 来自相关话题

说到PCB板,很多朋友会想到它在我们周围随处可见,从一切的家用电器,电脑内的各种配件,到各种数码产品,只要是电子产品几乎都会用到PCB板,那么到底什么是PCB板呢?PCB板就是PrintedCircuitBlock,即印制电路板,供电子组件安插,有线路的基版。通过使用印刷方式将镀铜的基版印上防蚀线路,并加以蚀刻冲洗出线路。






PCB板可以分为单层板、双层板和多层板。各种电子元件都是被集成在PCB板上的,在最基本的单层PCB上,零件都集中在一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,这样的PCB的正反面分别被称为零件面(ComponentSide)与焊接面(SolderSide)。双层板可以看作把两个单层板相对粘合在一起组成,板的两面都有电子元件和走线。有时候需要把一面的单线连接到板的另一面,这就要通过导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。现在很多电脑主板都在用4层甚至6层PCB板,而显卡一般都在用了6层PCB板,很多高端显卡像nVIDIAGeForce4Ti系列就采用了8层PCB板,这就是所谓的多层PCB板。在多层PCB板上也会遇到连接各个层之间线路的问题,也可以通过导孔来实现。由于是多层PCB板,所以有时候导孔不需要穿透整个PCB板,这样的导孔叫做埋孔(Buriedvias)和盲孔(Blindvias),因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。采用的PCB板层数越多,成本也就越高。当然,采用更多层的PCB板对提供信号的稳定性很有帮助。

专业的PCB板制作过程相当复杂,拿4层PCB板为例。主板的PCB大都是4层的。制造的时候是先将中间两层各自碾压、裁剪、蚀刻、氧化电镀后,这4层分别是元器件面、电源层、地层和焊锡压层。再将这4层放在一起碾压成一块主板的PCB。接着打孔、做过孔。洗净之后,将外面两层的线路印上、敷铜、蚀刻、测试、阻焊层、丝印。最后将整版PCB(含许多块主板)冲压成一块块主板的PCB,再通过测试后进行真空包装。如果PCB制作过程中铜皮敷着得不好,会有粘贴不牢现象,容易隐含短路或电容效应(容易产生干扰)。PCB上的过孔也是必须注意的。如果孔打得不是在正中间,而是偏向一边,就会产生不均匀匹配,或者容易与中间的电源层或地层接触,从而产生潜在短路或接地不良因素。

铜线布线过程

制作的第一步是建立出零件间联机的布线。我们采用负片转印方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。正光阻剂是由感光剂制成的,它在照明下会溶解。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光。这些被光阻剂盖住的地方,将会变成布线。在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂使用三氯化铁等。蚀刻结束后将剩下的光阻剂去除掉。

1.布线宽度和电流

一般宽度不宜小于0.2mm(8mil)
在高密度高精度的PCB上,间距和线宽一般0.3mm(12mil)。
当铜箔的厚度在50um左右时,导线宽度1~1.5mm (60mil) = 2A
公共地一般80mil,对于有微处理器的应用更要注意。

2.到底多高的频率才算高速板?

当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号.
对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,
按照一本非常经典的书《High Speed Digtal Design>的理论,信号从10%上升到90%的时间小于6倍导线延时,就是高速信号!------即!即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线路论

3.PCB板的堆叠与分层

四层板有以下几种叠层顺序。下面分别把各种不同的叠层优劣作说明:

第一种情况
GND
S1+POWER
S2+POWER
GND

第二种情况
SIG1
GND
POWER
SIG2

第三种情况

GND
S1
S2
POWER

注:S1 信号布线一层,S2 信号布线二层;GND 地层 POWER 电源层

第一种情况,应当是四层板中最好的一种情况。因为外层是地层,对EMI有屏蔽作用,同时电源层同地层也可靠得很近,使得电源内阻较小,取得最佳郊果。但第一种情况不能用于当本板密度比较大的情况。因为这样一来,就不能保证第一层地的完整性,这样第二层信号会变得更差。另外,此种结构也不能用于全板功耗比较大的情况。

第二种情况,是我们平时最常用的一种方式。从板的结构上,也不适用于高速数字电路设计。因为在这种结构中,不易保持低电源阻抗。以一个板2毫米为例:要求Z0=50ohm. 以线宽为8mil.铜箔厚为35цm。这样信号一层与地层中间是0.14mm。而地层与电源层为1.58mm。这样就大大的增加了电源的内阻。在此种结构中,由于辐射是向空间的,需加屏蔽板,才能减少EMI。

第三种情况,S1层上信号线质量最好。S2次之。对EMI有屏蔽作用。但电源阻抗较大。此板能用于全板功耗大而该板是干扰源或者说紧临着干扰源的情况下。

4.阻抗匹配

反射电压信号的幅值由源端反射系数ρs和负载反射系数ρL 决定
ρL = (RL - Z0) / (RL + Z0) 和 ρS = (RS - Z0) / (RS + Z0)
在上式中,若RL=Z0则负载反射系数ρL=0。若 RS=Z0源端反射系数ρS=0。

由于普通的传输线阻抗Z0通常应满足50Ω的要求50Ω左右,而负载阻抗通常在几千欧姆到几十千欧姆。因此,在负载端实现阻抗匹配比较困难。然而,由于信号源端(输出)阻抗通常比较小,大致为十几欧姆。因此在源端实现阻抗匹配要容易的多。如果在负载端并接电阻,电阻会吸收部分信号对传输不利(我的理解).当选择TTL/CMOS标准 24mA驱动电流时,其输出阻抗大致为13Ω。若传输线阻抗Z0=50Ω,那么应该加一个33Ω的源端匹配电阻。13Ω+33Ω=46Ω (近似于50Ω,弱的欠阻尼有助于信号的setup时间)

当选择其他传输标准和驱动电流时,匹配阻抗会有差异。在高速的逻辑和电路设计时,对一些关键的信号,如时钟、控制信号等,我们建议一定要加源端匹配电阻。

这样接了信号还会从负载端反射回来,因为源端阻抗匹配,反射回来的信号不会再反射回去。

5.电源线和地线布局注意事项

电源线尽量短,走直线,而且最好走树形、不要走环形

地线环路问题:对于数字电路来说,地线环路造成的地线环流也就是几十毫伏级别的,而TTL的抗干扰门限是1.2V,CMOS电路更可以达到1/2电源电压,也就是说地线环流根本就不会对电路的工作造成不良影响。相反,如果地线不闭合,问题会更大,因为数字电路在工作的时候产生的脉冲电源电流会造成各点的地电位不平衡,比如本人实测74LS161在反转时地线电流1.2A(用2Gsps示波器测出,地电流脉冲宽度7ns)。在大脉冲电流的冲击下,如果采用枝状地线(线宽25mil)分布,地线间各个点的电位差将会达到百毫伏级别。而采用地线环路之后,脉冲电流会散布到地线的各个点去,大大降低了干扰电路的可能。采用闭合地线,实测出各器件的地线最大瞬时电位差是不闭合地线的二分之一到五分之一。当然不同密度不同速度的电路板实测数据差异很大,我上面所说,指的是大约相当于Protel 99SE所附带的Z80 Demo板的水平;对于低频模拟电路,我认为地线闭合后的工频干扰是从空间感应到的,这是无论如何也仿真和计算不出来的。如果地线不闭合,不会产生地线涡流,beckhamtao所谓“但地线开环这个工频感应电压会更大。”的理论依据和在?举两个实例,7年前我接手别人的一个项目,精密压力计,用的是14位A/D转换器,但实测只有11位有效精度,经查,地线上有15mVp-p的工频干扰,解决方法就是把PCB的模拟地环路划开,前端传感器到A/D的地线用飞线作枝状分布,后来量产的型号PCB重新按照飞线的走线生产,至今未出现问题。第二个例子,一个朋友热爱发烧,自己DIY了一台功放,但输出始终有交流声,我建议其将地线环路切开,问题解决。事后此位老兄查阅数十种“Hi-Fi名机”PCB图,证实无一种机器在模拟部分采用地线环路。

6.印制电路板设计原则和抗干扰措施

印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。

PCB设计的一般原则

要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则:

布局

首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。

在确定特殊元件的位置时要遵守以下原则:

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

(3)重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

(5)应留出印制扳定位孔及固定支架所占用的位置。

根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:

(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、 整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。

(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。

2.布线

布线的原则如下:

(1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。

(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为 1 ~ 15mm 时.通过 2A的电流,温度不会高于3℃,因此.导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。

(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

3.焊盘

焊盘中心孔要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

PCB及电路抗干扰措施

印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。

1.电源线设计

根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

2.地线设计

地线设计的原则是:

(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。

(2)接地线应尽量加粗。若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm以上。

(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。

3.退藕电容配置

PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。

退藕电容的一般配置原则是:

(1)电源输入端跨接10 ~100uf的电解电容器。如有可能,接100uF以上的更好。

(2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1 ~ 10pF的但电容。

(3)对于抗噪能力弱、关断时电源变化大的器件,如 RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。

(4)电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:

(1)在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的 RC 电路来吸收放电电流。一般 R 取 1 ~ 2K,C取2.2 ~ 47UF。

(2)CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。

7.实现PCB高效自动布线的设计技巧和要点

尽管现在的EDA工具很强大,但随着PCB尺寸要求越来越小,器件密度越来越高,PCB设计的难度并不小。如何实现PCB高的布通率以及缩短设计时间呢?本文介绍PCB规划、布局和布线的设计技巧和要点。 现在PCB设计的时间越来越短,越来越小的电路板空间,越来越高的器件密度,极其苛刻的布局规则和大尺寸的组件使得设计师的工作更加困难。为了解决设计上的困难,加快产品的上市,现在很多厂家倾向于采用专用EDA工具来实现PCB的设计。但专用的EDA工具并不能产生理想的结果,也不能达到100%的布通率,而且很乱,通常还需花很多时间完成余下的工作。

现在市面上流行的EDA工具软件很多,但除了使用的术语和功能键的位置不一样外都大同小异,如何用这些工具更好地实现PCB的设计呢?在开始布线之前对设计进行认真的分析以及对工具软件进行认真的设置将使设计更加符合要求。下面是一般的设计过程和步骤。

1、确定PCB的层数

电路板尺寸和布线层数需要在设计初期确定。如果设计要求使用高密度球栅数组(BGA)组件,就必须考虑这些器件布线所需要的最少布线层数。布线层的数量以及层叠(stack-up)方式会直接影响到印制线的布线和阻抗。板的大小有助于确定层叠方式和印制线宽度,实现期望的设计效果。

多年来,人们总是认为电路板层数越少成本就越低,但是影响电路板的制造成本还有许多其它因素。近几年来,多层板之间的成本差别已经大大减小。在开始设计时最好采用较多的电路层并使敷铜均匀分布,以避免在设计临近结束时才发现有少量信号不符合已定义的规则以及空间要求,从而被迫添加新层。在设计之前认真的规划将减少布线中很多的麻烦。

2、设计规则和限制

自动布线工具本身并不知道应该做些什幺。为完成布线任务,布线工具需要在正确的规则和限制条件下工作。不同的信号线有不同的布线要求,要对所有特殊要求的信号线进行分类,不同的设计分类也不一样。每个信号类都应该有优先级,优先级越高,规则也越严格。规则涉及印制线宽度、过孔的最大数量、平行度、信号线之间的相互影响以及层的限制,这些规则对布线工具的性能有很大影响。认真考虑设计要求是成功布线的重要一步。

3、组件的布局

为最优化装配过程,可制造性设计(DFM)规则会对组件布局产生限制。如果装配部门允许组件移动,可以对电路适当优化,更便于自动布线。所定义的规则和约束条件会影响布局设计。

在布局时需考虑布线路径(routing channel)和过孔区域。这些路径和区域对设计人员而言是显而易见的,但自动布线工具一次只会考虑一个信号,通过设置布线约束条件以及设定可布信号线的层,可以使布线工具能像设计师所设想的那样完成布线。

4、扇出设计

在扇出设计阶段,要使自动布线工具能对组件引脚进行连接,表面贴装器件的每一个引脚至少应有一个过孔,以便在需要更多的连接时,电路板能够进行内层连接、在线测试(ICT)和电路再处理。

为了使自动布线工具效率最高,一定要尽可能使用最大的过孔尺寸和印制线,间隔设置为50mil较为理想。要采用使布线路径数最大的过孔类型。进行扇出设计时,要考虑到电路在线测试问题。测试夹具可能很昂贵,而且通常是在即将投入全面生产时才会订购,如果这时候才考虑添加节点以实现100%可测试性就太晚了。

经过慎重考虑和预测,电路在线测试的设计可在设计初期进行,在生产过程后期实现,根据布线路径和电路在线测试来确定过孔扇出类型,电源和接地也会影响到布线和扇出设计。为降低滤波电容器连接线产生的感抗,过孔应尽可能靠近表面贴装器件的引脚,必要时可采用手动布线,这可能会对原来设想的布线路径产生影响,甚至可能会导致你重新考虑使用哪种过孔,因此必须考虑过孔和引脚感抗间的关系并设定过孔规格的优先级。

5、手动布线以及关键信号的处理

尽管本文主要论述自动布线问题,但手动布线在现在和将来都是印刷电路板设计的一个重要过程。采用手动布线有助于自动布线工具完成布线工作。如图2a和图2b所示,通过对挑选出的网络(net)进行手动布线并加以固定,可以形成自动布线时可依据的路径。

无论关键信号的数量有多少,首先对这些信号进行布线,手动布线或结合自动布线工具均可。关键信号通常必须通过精心的电路设计才能达到期望的性能。布线完成后,再由有关的工程人员来对这些信号布线进行检查,这个过程相对容易得多。检查通过后,将这些线固定,然后开始对其余信号进行自动布线。

6、自动布线

对关键信号的布线需要考虑在布线时控制一些电参数,比如减小分布电感和EMC等,对于其它信号的布线也类似。所有的EDA厂商都会提供一种方法来控制这些参数。在了解自动布线工具有哪些输入参数以及输入参数对布线的影响后,自动布线的质量在一定程度上可以得到保证。

应该采用通用规则来对信号进行自动布线。通过设置限制条件和禁止布线区来限定给定信号所使用的层以及所用到的过孔数量,布线工具就能按照工程师的设计思想来自动布线。如果对自动布线工具所用的层和所布过孔的数量不加限制,自动布线时将会使用到每一层,而且将会产生很多过孔。

在设置好约束条件和应用所创建的规则后,自动布线将会达到与预期相近的结果,当然可能还需要进行一些整理工作,同时还需要确保其它信号和网络布线的空间。在一部分设计完成以后,将其固定下来,以防止受到后边布线过程的影响。

采用相同的步骤对其余信号进行布线。布线次数取决于电路的复杂性和你所定义的通用规则的多少。每完成一类信号后,其余网络布线的约束条件就会减少。但随之而来的是很多信号布线需要手动干预。现在的自动布线工具功能非常强大,通常可完成100%的布线。但是当自动布线工具未完成全部信号布线时,就需对余下的信号进行手动布线。

7、自动布线的设计要点包括:

7.1 略微改变设置,试用多种路径布线;

7.2 保持基本规则不变,试用不同的布线层、不同的印制线和间隔宽度以及不同线宽、不同类型的过孔如盲孔、埋孔等,观察这些因素对设计结果有何影响;

7.3让布线工具对那些默认的网络根据需要进行处理;

7.4信号越不重要,自动布线工具对其布线的自由度就越大。

8、布线的整理

如果你所使用的EDA工具软件能够列出信号的布线长度,检查这些数据,你可能会发现一些约束条件很少的信号布线的长度很长。这个问题比较容易处理,通过手动编辑可以缩短信号布线长度和减少过孔数量。在整理过程中,你需要判断出哪些布线合理,哪些布线不合理。同手动布线设计一样,自动布线设计也能在检查过程中进行整理和编辑。

9、电路板的外观

以前的设计常常注意电路板的视觉效果,现在不一样了。自动设计的电路板不比手动设计的美观,但在电子特性上能满足规定的要求,而且设计的完整性能得到保证。
 
 
来源:网络 查看全部
说到PCB板,很多朋友会想到它在我们周围随处可见,从一切的家用电器,电脑内的各种配件,到各种数码产品,只要是电子产品几乎都会用到PCB板,那么到底什么是PCB板呢?PCB板就是PrintedCircuitBlock,即印制电路板,供电子组件安插,有线路的基版。通过使用印刷方式将镀铜的基版印上防蚀线路,并加以蚀刻冲洗出线路。

QQ截图20170308184851.png


PCB板可以分为单层板、双层板和多层板。各种电子元件都是被集成在PCB板上的,在最基本的单层PCB上,零件都集中在一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,这样的PCB的正反面分别被称为零件面(ComponentSide)与焊接面(SolderSide)。双层板可以看作把两个单层板相对粘合在一起组成,板的两面都有电子元件和走线。有时候需要把一面的单线连接到板的另一面,这就要通过导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。现在很多电脑主板都在用4层甚至6层PCB板,而显卡一般都在用了6层PCB板,很多高端显卡像nVIDIAGeForce4Ti系列就采用了8层PCB板,这就是所谓的多层PCB板。在多层PCB板上也会遇到连接各个层之间线路的问题,也可以通过导孔来实现。由于是多层PCB板,所以有时候导孔不需要穿透整个PCB板,这样的导孔叫做埋孔(Buriedvias)和盲孔(Blindvias),因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。采用的PCB板层数越多,成本也就越高。当然,采用更多层的PCB板对提供信号的稳定性很有帮助。

专业的PCB板制作过程相当复杂,拿4层PCB板为例。主板的PCB大都是4层的。制造的时候是先将中间两层各自碾压、裁剪、蚀刻、氧化电镀后,这4层分别是元器件面、电源层、地层和焊锡压层。再将这4层放在一起碾压成一块主板的PCB。接着打孔、做过孔。洗净之后,将外面两层的线路印上、敷铜、蚀刻、测试、阻焊层、丝印。最后将整版PCB(含许多块主板)冲压成一块块主板的PCB,再通过测试后进行真空包装。如果PCB制作过程中铜皮敷着得不好,会有粘贴不牢现象,容易隐含短路或电容效应(容易产生干扰)。PCB上的过孔也是必须注意的。如果孔打得不是在正中间,而是偏向一边,就会产生不均匀匹配,或者容易与中间的电源层或地层接触,从而产生潜在短路或接地不良因素。

铜线布线过程

制作的第一步是建立出零件间联机的布线。我们采用负片转印方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。正光阻剂是由感光剂制成的,它在照明下会溶解。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光。这些被光阻剂盖住的地方,将会变成布线。在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂使用三氯化铁等。蚀刻结束后将剩下的光阻剂去除掉。

1.布线宽度和电流

一般宽度不宜小于0.2mm(8mil)
在高密度高精度的PCB上,间距和线宽一般0.3mm(12mil)。
当铜箔的厚度在50um左右时,导线宽度1~1.5mm (60mil) = 2A
公共地一般80mil,对于有微处理器的应用更要注意。

2.到底多高的频率才算高速板?

当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号.
对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,
按照一本非常经典的书《High Speed Digtal Design>的理论,信号从10%上升到90%的时间小于6倍导线延时,就是高速信号!------即!即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线路论

3.PCB板的堆叠与分层

四层板有以下几种叠层顺序。下面分别把各种不同的叠层优劣作说明:

第一种情况
GND
S1+POWER
S2+POWER
GND

第二种情况
SIG1
GND
POWER
SIG2

第三种情况

GND
S1
S2
POWER

注:S1 信号布线一层,S2 信号布线二层;GND 地层 POWER 电源层

第一种情况,应当是四层板中最好的一种情况。因为外层是地层,对EMI有屏蔽作用,同时电源层同地层也可靠得很近,使得电源内阻较小,取得最佳郊果。但第一种情况不能用于当本板密度比较大的情况。因为这样一来,就不能保证第一层地的完整性,这样第二层信号会变得更差。另外,此种结构也不能用于全板功耗比较大的情况。

第二种情况,是我们平时最常用的一种方式。从板的结构上,也不适用于高速数字电路设计。因为在这种结构中,不易保持低电源阻抗。以一个板2毫米为例:要求Z0=50ohm. 以线宽为8mil.铜箔厚为35цm。这样信号一层与地层中间是0.14mm。而地层与电源层为1.58mm。这样就大大的增加了电源的内阻。在此种结构中,由于辐射是向空间的,需加屏蔽板,才能减少EMI。

第三种情况,S1层上信号线质量最好。S2次之。对EMI有屏蔽作用。但电源阻抗较大。此板能用于全板功耗大而该板是干扰源或者说紧临着干扰源的情况下。

4.阻抗匹配

反射电压信号的幅值由源端反射系数ρs和负载反射系数ρL 决定
ρL = (RL - Z0) / (RL + Z0) 和 ρS = (RS - Z0) / (RS + Z0)
在上式中,若RL=Z0则负载反射系数ρL=0。若 RS=Z0源端反射系数ρS=0。

由于普通的传输线阻抗Z0通常应满足50Ω的要求50Ω左右,而负载阻抗通常在几千欧姆到几十千欧姆。因此,在负载端实现阻抗匹配比较困难。然而,由于信号源端(输出)阻抗通常比较小,大致为十几欧姆。因此在源端实现阻抗匹配要容易的多。如果在负载端并接电阻,电阻会吸收部分信号对传输不利(我的理解).当选择TTL/CMOS标准 24mA驱动电流时,其输出阻抗大致为13Ω。若传输线阻抗Z0=50Ω,那么应该加一个33Ω的源端匹配电阻。13Ω+33Ω=46Ω (近似于50Ω,弱的欠阻尼有助于信号的setup时间)

当选择其他传输标准和驱动电流时,匹配阻抗会有差异。在高速的逻辑和电路设计时,对一些关键的信号,如时钟、控制信号等,我们建议一定要加源端匹配电阻。

这样接了信号还会从负载端反射回来,因为源端阻抗匹配,反射回来的信号不会再反射回去。

5.电源线和地线布局注意事项

电源线尽量短,走直线,而且最好走树形、不要走环形

地线环路问题:对于数字电路来说,地线环路造成的地线环流也就是几十毫伏级别的,而TTL的抗干扰门限是1.2V,CMOS电路更可以达到1/2电源电压,也就是说地线环流根本就不会对电路的工作造成不良影响。相反,如果地线不闭合,问题会更大,因为数字电路在工作的时候产生的脉冲电源电流会造成各点的地电位不平衡,比如本人实测74LS161在反转时地线电流1.2A(用2Gsps示波器测出,地电流脉冲宽度7ns)。在大脉冲电流的冲击下,如果采用枝状地线(线宽25mil)分布,地线间各个点的电位差将会达到百毫伏级别。而采用地线环路之后,脉冲电流会散布到地线的各个点去,大大降低了干扰电路的可能。采用闭合地线,实测出各器件的地线最大瞬时电位差是不闭合地线的二分之一到五分之一。当然不同密度不同速度的电路板实测数据差异很大,我上面所说,指的是大约相当于Protel 99SE所附带的Z80 Demo板的水平;对于低频模拟电路,我认为地线闭合后的工频干扰是从空间感应到的,这是无论如何也仿真和计算不出来的。如果地线不闭合,不会产生地线涡流,beckhamtao所谓“但地线开环这个工频感应电压会更大。”的理论依据和在?举两个实例,7年前我接手别人的一个项目,精密压力计,用的是14位A/D转换器,但实测只有11位有效精度,经查,地线上有15mVp-p的工频干扰,解决方法就是把PCB的模拟地环路划开,前端传感器到A/D的地线用飞线作枝状分布,后来量产的型号PCB重新按照飞线的走线生产,至今未出现问题。第二个例子,一个朋友热爱发烧,自己DIY了一台功放,但输出始终有交流声,我建议其将地线环路切开,问题解决。事后此位老兄查阅数十种“Hi-Fi名机”PCB图,证实无一种机器在模拟部分采用地线环路。

6.印制电路板设计原则和抗干扰措施

印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。

PCB设计的一般原则

要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则:

布局

首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。

在确定特殊元件的位置时要遵守以下原则:

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

(3)重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

(5)应留出印制扳定位孔及固定支架所占用的位置。

根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:

(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、 整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。

(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。

2.布线

布线的原则如下:

(1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。

(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为 1 ~ 15mm 时.通过 2A的电流,温度不会高于3℃,因此.导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。

(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

3.焊盘

焊盘中心孔要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

PCB及电路抗干扰措施

印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。

1.电源线设计

根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

2.地线设计

地线设计的原则是:

(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。

(2)接地线应尽量加粗。若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm以上。

(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。

3.退藕电容配置

PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。

退藕电容的一般配置原则是:

(1)电源输入端跨接10 ~100uf的电解电容器。如有可能,接100uF以上的更好。

(2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1 ~ 10pF的但电容。

(3)对于抗噪能力弱、关断时电源变化大的器件,如 RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。

(4)电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:

(1)在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的 RC 电路来吸收放电电流。一般 R 取 1 ~ 2K,C取2.2 ~ 47UF。

(2)CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。

7.实现PCB高效自动布线的设计技巧和要点

尽管现在的EDA工具很强大,但随着PCB尺寸要求越来越小,器件密度越来越高,PCB设计的难度并不小。如何实现PCB高的布通率以及缩短设计时间呢?本文介绍PCB规划、布局和布线的设计技巧和要点。 现在PCB设计的时间越来越短,越来越小的电路板空间,越来越高的器件密度,极其苛刻的布局规则和大尺寸的组件使得设计师的工作更加困难。为了解决设计上的困难,加快产品的上市,现在很多厂家倾向于采用专用EDA工具来实现PCB的设计。但专用的EDA工具并不能产生理想的结果,也不能达到100%的布通率,而且很乱,通常还需花很多时间完成余下的工作。

现在市面上流行的EDA工具软件很多,但除了使用的术语和功能键的位置不一样外都大同小异,如何用这些工具更好地实现PCB的设计呢?在开始布线之前对设计进行认真的分析以及对工具软件进行认真的设置将使设计更加符合要求。下面是一般的设计过程和步骤。

1、确定PCB的层数

电路板尺寸和布线层数需要在设计初期确定。如果设计要求使用高密度球栅数组(BGA)组件,就必须考虑这些器件布线所需要的最少布线层数。布线层的数量以及层叠(stack-up)方式会直接影响到印制线的布线和阻抗。板的大小有助于确定层叠方式和印制线宽度,实现期望的设计效果。

多年来,人们总是认为电路板层数越少成本就越低,但是影响电路板的制造成本还有许多其它因素。近几年来,多层板之间的成本差别已经大大减小。在开始设计时最好采用较多的电路层并使敷铜均匀分布,以避免在设计临近结束时才发现有少量信号不符合已定义的规则以及空间要求,从而被迫添加新层。在设计之前认真的规划将减少布线中很多的麻烦。

2、设计规则和限制

自动布线工具本身并不知道应该做些什幺。为完成布线任务,布线工具需要在正确的规则和限制条件下工作。不同的信号线有不同的布线要求,要对所有特殊要求的信号线进行分类,不同的设计分类也不一样。每个信号类都应该有优先级,优先级越高,规则也越严格。规则涉及印制线宽度、过孔的最大数量、平行度、信号线之间的相互影响以及层的限制,这些规则对布线工具的性能有很大影响。认真考虑设计要求是成功布线的重要一步。

3、组件的布局

为最优化装配过程,可制造性设计(DFM)规则会对组件布局产生限制。如果装配部门允许组件移动,可以对电路适当优化,更便于自动布线。所定义的规则和约束条件会影响布局设计。

在布局时需考虑布线路径(routing channel)和过孔区域。这些路径和区域对设计人员而言是显而易见的,但自动布线工具一次只会考虑一个信号,通过设置布线约束条件以及设定可布信号线的层,可以使布线工具能像设计师所设想的那样完成布线。

4、扇出设计

在扇出设计阶段,要使自动布线工具能对组件引脚进行连接,表面贴装器件的每一个引脚至少应有一个过孔,以便在需要更多的连接时,电路板能够进行内层连接、在线测试(ICT)和电路再处理。

为了使自动布线工具效率最高,一定要尽可能使用最大的过孔尺寸和印制线,间隔设置为50mil较为理想。要采用使布线路径数最大的过孔类型。进行扇出设计时,要考虑到电路在线测试问题。测试夹具可能很昂贵,而且通常是在即将投入全面生产时才会订购,如果这时候才考虑添加节点以实现100%可测试性就太晚了。

经过慎重考虑和预测,电路在线测试的设计可在设计初期进行,在生产过程后期实现,根据布线路径和电路在线测试来确定过孔扇出类型,电源和接地也会影响到布线和扇出设计。为降低滤波电容器连接线产生的感抗,过孔应尽可能靠近表面贴装器件的引脚,必要时可采用手动布线,这可能会对原来设想的布线路径产生影响,甚至可能会导致你重新考虑使用哪种过孔,因此必须考虑过孔和引脚感抗间的关系并设定过孔规格的优先级。

5、手动布线以及关键信号的处理

尽管本文主要论述自动布线问题,但手动布线在现在和将来都是印刷电路板设计的一个重要过程。采用手动布线有助于自动布线工具完成布线工作。如图2a和图2b所示,通过对挑选出的网络(net)进行手动布线并加以固定,可以形成自动布线时可依据的路径。

无论关键信号的数量有多少,首先对这些信号进行布线,手动布线或结合自动布线工具均可。关键信号通常必须通过精心的电路设计才能达到期望的性能。布线完成后,再由有关的工程人员来对这些信号布线进行检查,这个过程相对容易得多。检查通过后,将这些线固定,然后开始对其余信号进行自动布线。

6、自动布线

对关键信号的布线需要考虑在布线时控制一些电参数,比如减小分布电感和EMC等,对于其它信号的布线也类似。所有的EDA厂商都会提供一种方法来控制这些参数。在了解自动布线工具有哪些输入参数以及输入参数对布线的影响后,自动布线的质量在一定程度上可以得到保证。

应该采用通用规则来对信号进行自动布线。通过设置限制条件和禁止布线区来限定给定信号所使用的层以及所用到的过孔数量,布线工具就能按照工程师的设计思想来自动布线。如果对自动布线工具所用的层和所布过孔的数量不加限制,自动布线时将会使用到每一层,而且将会产生很多过孔。

在设置好约束条件和应用所创建的规则后,自动布线将会达到与预期相近的结果,当然可能还需要进行一些整理工作,同时还需要确保其它信号和网络布线的空间。在一部分设计完成以后,将其固定下来,以防止受到后边布线过程的影响。

采用相同的步骤对其余信号进行布线。布线次数取决于电路的复杂性和你所定义的通用规则的多少。每完成一类信号后,其余网络布线的约束条件就会减少。但随之而来的是很多信号布线需要手动干预。现在的自动布线工具功能非常强大,通常可完成100%的布线。但是当自动布线工具未完成全部信号布线时,就需对余下的信号进行手动布线。

7、自动布线的设计要点包括:

7.1 略微改变设置,试用多种路径布线;

7.2 保持基本规则不变,试用不同的布线层、不同的印制线和间隔宽度以及不同线宽、不同类型的过孔如盲孔、埋孔等,观察这些因素对设计结果有何影响;

7.3让布线工具对那些默认的网络根据需要进行处理;

7.4信号越不重要,自动布线工具对其布线的自由度就越大。

8、布线的整理

如果你所使用的EDA工具软件能够列出信号的布线长度,检查这些数据,你可能会发现一些约束条件很少的信号布线的长度很长。这个问题比较容易处理,通过手动编辑可以缩短信号布线长度和减少过孔数量。在整理过程中,你需要判断出哪些布线合理,哪些布线不合理。同手动布线设计一样,自动布线设计也能在检查过程中进行整理和编辑。

9、电路板的外观

以前的设计常常注意电路板的视觉效果,现在不一样了。自动设计的电路板不比手动设计的美观,但在电子特性上能满足规定的要求,而且设计的完整性能得到保证。
 
 
来源:网络
339 浏览

PCB板内互连高频PCB设计实战秘籍

设备硬件类 功夫熊猫 2017-01-18 10:44 发表了文章 来自相关话题

PCB设计的目标是更小、更快和成本更低。而由于互连点是电路链上最为薄弱的环节,在RF设计中,互连点处的电磁性质是工程设计面临的主要问题,要考察每个互连点并解决存在的问题。

电路板系统的互连包括芯片到电路板、PCB板内互连以及PCB与外部装置之间信号输入/输出等三类互连。本文主要介绍了PCB板内互连进行高频PCB设计的实用技巧总结,相信通过了解本文将对您以后的PCB设计带来便利。
 
PCB设计中芯片与PCB互连对设计来说是重要的,然而芯片与PCB互连的最主要问题是互连密度太高会导致PCB材料的基本结构成为限制互连密度增长的因素。下面为大家分享高频PCB设计的实用技巧。就高频应用而言,PCB板内互连进行高频PCB设计的技巧有:

1、传输线拐角要采用45°角,以降低回损。

2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

3、要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

4、突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺。因为该工艺会导致过孔处产生引线电感。如一个20 层板上的一个过孔用于连接1至3层时,引线电感可影响4到19层。

6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3 维电磁场对电路板的影响。

7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应。此外,这种高可焊涂层所需引线较少,有助于减少环境污染。

8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solderdam)来作阻焊层。
 
 
 
来源:网络 查看全部
PCB设计的目标是更小、更快和成本更低。而由于互连点是电路链上最为薄弱的环节,在RF设计中,互连点处的电磁性质是工程设计面临的主要问题,要考察每个互连点并解决存在的问题。

电路板系统的互连包括芯片到电路板、PCB板内互连以及PCB与外部装置之间信号输入/输出等三类互连。本文主要介绍了PCB板内互连进行高频PCB设计的实用技巧总结,相信通过了解本文将对您以后的PCB设计带来便利。
 
PCB设计中芯片与PCB互连对设计来说是重要的,然而芯片与PCB互连的最主要问题是互连密度太高会导致PCB材料的基本结构成为限制互连密度增长的因素。下面为大家分享高频PCB设计的实用技巧。就高频应用而言,PCB板内互连进行高频PCB设计的技巧有:

1、传输线拐角要采用45°角,以降低回损。

2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

3、要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

4、突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺。因为该工艺会导致过孔处产生引线电感。如一个20 层板上的一个过孔用于连接1至3层时,引线电感可影响4到19层。

6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3 维电磁场对电路板的影响。

7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应。此外,这种高可焊涂层所需引线较少,有助于减少环境污染。

8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solderdam)来作阻焊层。
 
 
 
来源:网络
358 浏览

说说PCB线路板的设计顺序

材料类 功夫熊猫 2017-01-18 10:42 发表了文章 来自相关话题

一般PCB基本设计流程如下:前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。
 
第一:前期准备

1、这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库(这是第一步-很重要)。元件库可以用Protel自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。
原则上先做PCB的元件库,再做SCH的元件库。PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。

PS:注意标准库中的隐藏管脚。之后就是原理图的设计,做好后就准备开始做PCB设计了。

2、制作原理图的库时注意引脚是否连上/输出PCB板后检查一下制作的库。
 
第二:PCB结构设计
这一步根据已经确定的电路板平面尺寸和各项机械定位,在PCB设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、数码管、指示灯、输入、输出、螺丝孔、装配孔等等.并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。

(——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置—空间尺寸,器件放置的面,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”)。

第三:PCB布局

1、布局前确保原理图的正确无误—这很重要!-----非常重要!

原理图绘制完毕检查项目:电源网络、地网络等。

2、布局时要注意器件放置的面(特别是插件等)与器件的摆放方式(直插是卧放还是竖着放),以保证安装的可行性与便利性。

3、布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design->CreateNetlist),之后在PCB图上导入网络表(Design->LoadNets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接,然后就可以对器件布局了。

一般布局按如下原则进行:

布局时应确定好器件放置的面:一般来讲贴片要放同一面,插件要看具体的情况。

①按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);
②完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;
③对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;
④I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;
⑤时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件; 
⑥布局要求要均衡,疏密有序,不能头重脚轻或一头沉。

 第四:布线

布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准.这是在布通之后,认真调整布线,使其能达到最佳的电器性能,接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法.这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。

布线时主要按以下原则进行:
①一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm.对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用);
②预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰.必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合;
③振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;
④尽可能采用45°的折线布线,不可使用90°折线,以减小高频信号的辐射;(要求高的线还要用双弧线);
⑤任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;
⑥关键的线尽量短而粗,并在两边加上保护地;
⑦通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出;
⑧关键信号应预留测试点,以方便调试、生产和维修检测用;
⑨原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

第五:添加泪滴

第六:检查的第一项,依次看Keepout层、top层、bottom层topoverlay、bottomoverlay。

第七:电器规则检查:过孔(0过孔-很是不可思议;0.8分界线)、是否有断开的网表、最小间距(10mil)、短路(对个参数要逐条分析)

第八:电源线与地线的检查—干扰。(滤波电容应靠近芯片)

第九:PCB完成后重新载入网标可检查网表是否有被修改的地方—很奏效。

第十:PCB完成后把核心器件的线核查一下,确保准确无误。
 
 
来源:网络 查看全部
一般PCB基本设计流程如下:前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。
 
第一:前期准备

1、这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库(这是第一步-很重要)。元件库可以用Protel自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。
原则上先做PCB的元件库,再做SCH的元件库。PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。

PS:注意标准库中的隐藏管脚。之后就是原理图的设计,做好后就准备开始做PCB设计了。

2、制作原理图的库时注意引脚是否连上/输出PCB板后检查一下制作的库。
 
第二:PCB结构设计
这一步根据已经确定的电路板平面尺寸和各项机械定位,在PCB设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、数码管、指示灯、输入、输出、螺丝孔、装配孔等等.并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。

(——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置—空间尺寸,器件放置的面,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”)。

第三:PCB布局

1、布局前确保原理图的正确无误—这很重要!-----非常重要!

原理图绘制完毕检查项目:电源网络、地网络等。

2、布局时要注意器件放置的面(特别是插件等)与器件的摆放方式(直插是卧放还是竖着放),以保证安装的可行性与便利性。

3、布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design->CreateNetlist),之后在PCB图上导入网络表(Design->LoadNets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接,然后就可以对器件布局了。

一般布局按如下原则进行:

布局时应确定好器件放置的面:一般来讲贴片要放同一面,插件要看具体的情况。

①按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);
②完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;
③对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;
④I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;
⑤时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件; 
⑥布局要求要均衡,疏密有序,不能头重脚轻或一头沉。

 第四:布线

布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准.这是在布通之后,认真调整布线,使其能达到最佳的电器性能,接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法.这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。

布线时主要按以下原则进行:
①一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm.对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用);
②预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰.必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合;
③振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;
④尽可能采用45°的折线布线,不可使用90°折线,以减小高频信号的辐射;(要求高的线还要用双弧线);
⑤任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;
⑥关键的线尽量短而粗,并在两边加上保护地;
⑦通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出;
⑧关键信号应预留测试点,以方便调试、生产和维修检测用;
⑨原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

第五:添加泪滴

第六:检查的第一项,依次看Keepout层、top层、bottom层topoverlay、bottomoverlay。

第七:电器规则检查:过孔(0过孔-很是不可思议;0.8分界线)、是否有断开的网表、最小间距(10mil)、短路(对个参数要逐条分析)

第八:电源线与地线的检查—干扰。(滤波电容应靠近芯片)

第九:PCB完成后重新载入网标可检查网表是否有被修改的地方—很奏效。

第十:PCB完成后把核心器件的线核查一下,确保准确无误。
 
 
来源:网络
360 浏览

PCB设计:如何减少错误并提高效率

设备硬件类 邓紫棋 2016-12-19 11:12 发表了文章 来自相关话题

设计电路板设计是一项关键而又耗时的任务,出现任何问题都需要工程师逐个网络逐个元件地检查整个设计。可以说电路板设计要求的细心程度不亚于芯片设计。

典型的电路板设计流程由以下步骤组成:






前面三个步骤花的时间最多,因为原理图检查是一个手工过程。想像一个具有1000条甚至更多连线的SoC电路板。人工检查每一根连线是冗长乏味的一项任务。事实上,检查每根连线几乎是不可能的,因而会导致最终电路板出问题,比如错误的连线、悬浮节点等。

原理图捕获阶段一般会面临以下几类问题:

● 下划线错误:比如APLLVDD和APLL_VDD

● 大小写问题:比如VDDE和vdde

● 拼写错误

● 信号短路问题

● ……还有许多

为了避免这些错误,应该有种方法能够在几秒的时间内检查完整个原理图。这个方法可以用原理图仿真来实现,而原理图仿真在目前的电路板设计流程中还很少见到。通过原理图仿真可以在要求的节点观察最终输出结果,因此它能自动检查所有连接问题。

下面通过一个项目实例进行解释。考虑电路板的一个典型框图:





图1

在复杂的电路板设计中,连线数量可能达到数千条,而极少量的更改很可能浪费许多时间去检查。

原理图仿真不仅能节省设计时间,而且能提高电路板质量,并且提高整个流程的效率。

一个典型的待测设备(DUT)具有以下一些信号:





图2

待测设备在经过某些预调整后会有各种各样的信号,并且有各种模块,如稳压器、运放等,用于信号调整。考虑通过稳压器得到的一个供电信号例子:





图3:样例电路板的原理图。

为了验证连接关系并执行整体检查,使用了原理图仿真。原理图仿真由原理图创建、测试平台创建和仿真组成。

在测试平台创建过程中,将有激励信号给到必要的输入端,然后在感兴趣的信号点观察输出结果。
可以通过将探针连接到待观察节点实现上述过程。节点电压和波形可以指示原理图有没有错误。所有信号连接都会得到自动检查。





图4:原理图测试平台和各个节点的仿真值。

让我们看一下上面这张图的一个局部,其中探测的节点和电压清晰可见:






因此在仿真的帮助下,我们可以直接观察结果,确认电路板原理图是否正确。另外,通过仔细调节激励信号或元件值还可以实现设计更改的调查。因此原理图仿真可以节省电路板设计和检查人员的大量时间,并且增加设计正确性的机会。
 
 
 
 
来源:网络 查看全部
设计电路板设计是一项关键而又耗时的任务,出现任何问题都需要工程师逐个网络逐个元件地检查整个设计。可以说电路板设计要求的细心程度不亚于芯片设计。

典型的电路板设计流程由以下步骤组成:

QQ截图20161219110600.png


前面三个步骤花的时间最多,因为原理图检查是一个手工过程。想像一个具有1000条甚至更多连线的SoC电路板。人工检查每一根连线是冗长乏味的一项任务。事实上,检查每根连线几乎是不可能的,因而会导致最终电路板出问题,比如错误的连线、悬浮节点等。

原理图捕获阶段一般会面临以下几类问题:

● 下划线错误:比如APLLVDD和APLL_VDD

● 大小写问题:比如VDDE和vdde

● 拼写错误

● 信号短路问题

● ……还有许多

为了避免这些错误,应该有种方法能够在几秒的时间内检查完整个原理图。这个方法可以用原理图仿真来实现,而原理图仿真在目前的电路板设计流程中还很少见到。通过原理图仿真可以在要求的节点观察最终输出结果,因此它能自动检查所有连接问题。

下面通过一个项目实例进行解释。考虑电路板的一个典型框图:

QQ截图20161219110617.png

图1

在复杂的电路板设计中,连线数量可能达到数千条,而极少量的更改很可能浪费许多时间去检查。

原理图仿真不仅能节省设计时间,而且能提高电路板质量,并且提高整个流程的效率。

一个典型的待测设备(DUT)具有以下一些信号:

QQ截图20161219110629.png

图2

待测设备在经过某些预调整后会有各种各样的信号,并且有各种模块,如稳压器、运放等,用于信号调整。考虑通过稳压器得到的一个供电信号例子:

QQ截图20161219110648.png

图3:样例电路板的原理图。

为了验证连接关系并执行整体检查,使用了原理图仿真。原理图仿真由原理图创建、测试平台创建和仿真组成。

在测试平台创建过程中,将有激励信号给到必要的输入端,然后在感兴趣的信号点观察输出结果。
可以通过将探针连接到待观察节点实现上述过程。节点电压和波形可以指示原理图有没有错误。所有信号连接都会得到自动检查。

QQ截图20161219110703.png

图4:原理图测试平台和各个节点的仿真值。

让我们看一下上面这张图的一个局部,其中探测的节点和电压清晰可见:

QQ截图20161219110715.png


因此在仿真的帮助下,我们可以直接观察结果,确认电路板原理图是否正确。另外,通过仔细调节激励信号或元件值还可以实现设计更改的调查。因此原理图仿真可以节省电路板设计和检查人员的大量时间,并且增加设计正确性的机会。
 
 
 
 
来源:网络
627 浏览

让你的PCB设计更优秀七个设计要点

设备硬件类 回锅肉 2016-11-07 10:27 发表了文章 来自相关话题

导读:PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。随着电子设备越来越复杂,对PCB尺寸的要求也越来越小,与此同时,PCB设计难度也越来越大。今天本文就对此谈谈一款优秀PCB设计中要把握的几大要点。


PCB layout的工作在很多人眼里都是很枯燥无聊的,甚至很多工程师也会这样认为,每天对着板子成千上万条走线,各种各样的封装,重复着拉线的工作。

其实设计人员既要兼顾性能,成本,工艺等各个方面,又要注意到板子布局的合理整齐,所以并没有看上去的那么简单,需要更多的智慧。下面我们就来说说在设计时养成一些好的工作习惯,会让你的设计更合理,生产更容易,性能更好。

一款优秀PCB作品在开始设计之前应该先对设计进行认真的分析以及对工具软件进行认真的设置,做好以下几方面的工作。

(一) 画好原理图

很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。

(二) 好的电路布局技巧

心急的工程师画完原理图,把网表导入PCB后就迫不及待的把器件放好,开始拉线。其实一个好的PCB布局能让你后面的拉线工作变得简单,让你的PCB工作的更好。每一块板子都会有一个信号路径,PCB布局也应该尽量遵循这个信号路径,让信号在板子上可以顺畅的传输,人们都不喜欢走迷宫,信号也一样。如果原理图是按照模块设计的,PCB也一样可以。按照不同的功能模块可以把板子划分为若干区域。模拟数字分开,电源信号分开,发热器件和易感器件分开,体积较大的器件不要太靠近板边,注意射频信号的屏蔽等等……多花一分的时间去优化PCB的布局,就能在拉线的时候节省更多的时间。

(三) 学会设置规则

其实现在不光高级的PCB设计软件需要设置布线规则,一些简单易用的PCB工具同样可以进行规则设置。人脑毕竟不是机器,那就难免会有疏忽有失误。所以把一些容易忽略的问题设置到规则里面,让电脑帮助我们检查,尽量避免犯一些低级错误。另外,完善的规则设置能更好的规范后面的工作。所谓磨刀不误砍柴工,板子的规模越复杂规则设置的重要性越突出。而若干PCB组成系统,各个PCB板子相互连接之间的信号或电源在动作时,例如A板子有电源或信号送到B板子,一定会有等量的电流从地层流回到A板子,这地层上的电流会找阻抗最小的地方流回去。所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法,降低对其它较敏感信号的影响。

(四) Pcb板的布线技术

做PCB时是选用双面板还是多层板,要看最高工作频率和电路系统的复杂程度以及对组装密度的要求来决定。在时钟频率超过200MHZ时最好选用多层板。如果工作频率超过350MHz,最好选用以聚四氟乙烯作为介质层的印制电路板,因为它的高频衰耗要小些,寄生电容要小些,传输速度要快些,还由于Z0较大而省功耗,对印制电路板的走线有如下原则要求

1)所有平行信号线之间要尽量留有较大的间隔,以减少串扰。如果有两条相距较近的信号线,最好在两线之间走一条接地线,这样可以起到屏蔽作用。

2) 设计信号传输线时要避免急拐弯,以防传输线特性阻抗的突变而产生反射,要尽量设计成具有一定尺寸的均匀的圆弧线。

3)印制线的宽度可根据上述微带线和带状线的特性阻抗计算公式计算,印制电路板上的微带线的特性阻抗一般在50~120Ω之间。要想得到大的特性阻抗,线宽必须做得很窄。但很细的线条又不容易制作。综合各种因素考虑,一般选择68Ω左右的阻抗值比较合适,因为选择68Ω的特性阻抗,可以在延迟时间和功耗之间达到最佳平衡。一条50Ω的传输线将消耗更多的功率;较大的阻抗固然可以使消耗功率减少,但会使传输延迟时间憎大。由于负线电容会造成传输延迟时间的增大和特性阻抗的降低。但特性阻抗很低的线段单位长度的本征电容比较大,所以传输延迟时间及特性阻抗受负载电容的影响较小。具有适当端接的传输线的一个重要特征是,分枝短线对线延迟时间应没有什么影响。当Z0为50Ω时。分枝短线的长度必须限制在2.5cm以内。以免出现很大的振铃。

4)对于双面板(或六层板中走四层线)。电路板两面的线要互相垂直,以防止互相感应产主串扰。

5)印制板上若装有大电流器件,如继电器、指示灯、喇叭等,它们的地线最好要分开单独走,以减少地线上的噪声,这些大电流器件的地线应连到插件板和背板上的一个独立的地总线上去,而且这些独立的地线还应该与整个系统的接地点相连接。

6)如果板上有小信号放大器,则放大前的弱信号线要远离强信号线,而且走线要尽可能地短,如有可能还要用地线对其进行屏蔽。

(五)为别人考虑的越多,自己的工作越少

 在进行PCB设计的时候,尽量多考虑一些最终使用者的需求。比如,如果设计的是一块开发板,那么在进行PCB设计的时候就要考虑放置更多的丝印信息, 这样在使用的时候会更方便,不用来回的查找原理图或者找设计人员支持了。如果设计的是一个量产产品,那么就要更多的考虑到生产线上会遇到的问题,同类型的 器件尽量方向一致,器件间距是否合适,板子的工艺边宽度等等。这些问题考虑的越早,越不会影响后面的设计,也可以减少后面支持的工作量和改板的次数。看上 去开始设计上用的时间增加了,实际上是减少了自己后续的工作量。在板子空间信号允许的情况下,尽量放置更多的测试点,提高板子的可测性,这样在后续调试阶 段同样能节省更多的时间,给发现问题提供更多的思路。

(六)细节决定成败

 PCB设计是一个细致的工作,需要的就是细心和耐心。刚开始做设计的新手经常犯的错误就是一些细节错误。器件管脚弄错了,器件封装用错了,管脚顺序画反了等等,有些可以通过飞线来解决,有些可能就让一块板子直接变成了废品。画封装的时候多检查一遍,投板之前把封装打印出来和实际器件比一下,多看一眼,多检查一遍不是强迫症,只是让这些容易犯的低级错误尽量避免。否则设计的再好看的板子,上面布满飞线,也就远谈不上优秀了。

(七)尝试着去做仿真

        仿真往往是PCB设计工程师不愿意去碰的东西。也许有人会说,即使我仿真了,实际制作出来的PCB和仿真结果还是会有区别,那我还去浪费时间做仿真干嘛?我不仿真做出来的板子不是一样工作的好好的?对这种想法很无奈。一两次设计没有问题,不代表以后不会出问题。虽然仿真结果和实际结果有差异,但仿真能表现出正确的变化趋势,根据趋势我们能做出自己的判断。刚开始可能会有困难,对仿真参数仿真模型一头雾水,这都是很正常的。只要开始,慢慢去做,慢慢去积累,就会让你体会到仿真的重要性。在板子完成之前提前判断出容易出问题的位置,提前解决它,避免问题的发生。仿真做的多了,就会从根本上弄明白问题产生的原因,对自己设计能力的提高也会有很大帮助。
 
 
 
来源:网络 查看全部
导读:PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。随着电子设备越来越复杂,对PCB尺寸的要求也越来越小,与此同时,PCB设计难度也越来越大。今天本文就对此谈谈一款优秀PCB设计中要把握的几大要点。


PCB layout的工作在很多人眼里都是很枯燥无聊的,甚至很多工程师也会这样认为,每天对着板子成千上万条走线,各种各样的封装,重复着拉线的工作。

其实设计人员既要兼顾性能,成本,工艺等各个方面,又要注意到板子布局的合理整齐,所以并没有看上去的那么简单,需要更多的智慧。下面我们就来说说在设计时养成一些好的工作习惯,会让你的设计更合理,生产更容易,性能更好。

一款优秀PCB作品在开始设计之前应该先对设计进行认真的分析以及对工具软件进行认真的设置,做好以下几方面的工作。

(一) 画好原理图

很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。

(二) 好的电路布局技巧

心急的工程师画完原理图,把网表导入PCB后就迫不及待的把器件放好,开始拉线。其实一个好的PCB布局能让你后面的拉线工作变得简单,让你的PCB工作的更好。每一块板子都会有一个信号路径,PCB布局也应该尽量遵循这个信号路径,让信号在板子上可以顺畅的传输,人们都不喜欢走迷宫,信号也一样。如果原理图是按照模块设计的,PCB也一样可以。按照不同的功能模块可以把板子划分为若干区域。模拟数字分开,电源信号分开,发热器件和易感器件分开,体积较大的器件不要太靠近板边,注意射频信号的屏蔽等等……多花一分的时间去优化PCB的布局,就能在拉线的时候节省更多的时间。

(三) 学会设置规则

其实现在不光高级的PCB设计软件需要设置布线规则,一些简单易用的PCB工具同样可以进行规则设置。人脑毕竟不是机器,那就难免会有疏忽有失误。所以把一些容易忽略的问题设置到规则里面,让电脑帮助我们检查,尽量避免犯一些低级错误。另外,完善的规则设置能更好的规范后面的工作。所谓磨刀不误砍柴工,板子的规模越复杂规则设置的重要性越突出。而若干PCB组成系统,各个PCB板子相互连接之间的信号或电源在动作时,例如A板子有电源或信号送到B板子,一定会有等量的电流从地层流回到A板子,这地层上的电流会找阻抗最小的地方流回去。所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法,降低对其它较敏感信号的影响。

(四) Pcb板的布线技术

做PCB时是选用双面板还是多层板,要看最高工作频率和电路系统的复杂程度以及对组装密度的要求来决定。在时钟频率超过200MHZ时最好选用多层板。如果工作频率超过350MHz,最好选用以聚四氟乙烯作为介质层的印制电路板,因为它的高频衰耗要小些,寄生电容要小些,传输速度要快些,还由于Z0较大而省功耗,对印制电路板的走线有如下原则要求

1)所有平行信号线之间要尽量留有较大的间隔,以减少串扰。如果有两条相距较近的信号线,最好在两线之间走一条接地线,这样可以起到屏蔽作用。

2) 设计信号传输线时要避免急拐弯,以防传输线特性阻抗的突变而产生反射,要尽量设计成具有一定尺寸的均匀的圆弧线。

3)印制线的宽度可根据上述微带线和带状线的特性阻抗计算公式计算,印制电路板上的微带线的特性阻抗一般在50~120Ω之间。要想得到大的特性阻抗,线宽必须做得很窄。但很细的线条又不容易制作。综合各种因素考虑,一般选择68Ω左右的阻抗值比较合适,因为选择68Ω的特性阻抗,可以在延迟时间和功耗之间达到最佳平衡。一条50Ω的传输线将消耗更多的功率;较大的阻抗固然可以使消耗功率减少,但会使传输延迟时间憎大。由于负线电容会造成传输延迟时间的增大和特性阻抗的降低。但特性阻抗很低的线段单位长度的本征电容比较大,所以传输延迟时间及特性阻抗受负载电容的影响较小。具有适当端接的传输线的一个重要特征是,分枝短线对线延迟时间应没有什么影响。当Z0为50Ω时。分枝短线的长度必须限制在2.5cm以内。以免出现很大的振铃。

4)对于双面板(或六层板中走四层线)。电路板两面的线要互相垂直,以防止互相感应产主串扰。

5)印制板上若装有大电流器件,如继电器、指示灯、喇叭等,它们的地线最好要分开单独走,以减少地线上的噪声,这些大电流器件的地线应连到插件板和背板上的一个独立的地总线上去,而且这些独立的地线还应该与整个系统的接地点相连接。

6)如果板上有小信号放大器,则放大前的弱信号线要远离强信号线,而且走线要尽可能地短,如有可能还要用地线对其进行屏蔽。

(五)为别人考虑的越多,自己的工作越少

 在进行PCB设计的时候,尽量多考虑一些最终使用者的需求。比如,如果设计的是一块开发板,那么在进行PCB设计的时候就要考虑放置更多的丝印信息, 这样在使用的时候会更方便,不用来回的查找原理图或者找设计人员支持了。如果设计的是一个量产产品,那么就要更多的考虑到生产线上会遇到的问题,同类型的 器件尽量方向一致,器件间距是否合适,板子的工艺边宽度等等。这些问题考虑的越早,越不会影响后面的设计,也可以减少后面支持的工作量和改板的次数。看上 去开始设计上用的时间增加了,实际上是减少了自己后续的工作量。在板子空间信号允许的情况下,尽量放置更多的测试点,提高板子的可测性,这样在后续调试阶 段同样能节省更多的时间,给发现问题提供更多的思路。

(六)细节决定成败

 PCB设计是一个细致的工作,需要的就是细心和耐心。刚开始做设计的新手经常犯的错误就是一些细节错误。器件管脚弄错了,器件封装用错了,管脚顺序画反了等等,有些可以通过飞线来解决,有些可能就让一块板子直接变成了废品。画封装的时候多检查一遍,投板之前把封装打印出来和实际器件比一下,多看一眼,多检查一遍不是强迫症,只是让这些容易犯的低级错误尽量避免。否则设计的再好看的板子,上面布满飞线,也就远谈不上优秀了。

(七)尝试着去做仿真

        仿真往往是PCB设计工程师不愿意去碰的东西。也许有人会说,即使我仿真了,实际制作出来的PCB和仿真结果还是会有区别,那我还去浪费时间做仿真干嘛?我不仿真做出来的板子不是一样工作的好好的?对这种想法很无奈。一两次设计没有问题,不代表以后不会出问题。虽然仿真结果和实际结果有差异,但仿真能表现出正确的变化趋势,根据趋势我们能做出自己的判断。刚开始可能会有困难,对仿真参数仿真模型一头雾水,这都是很正常的。只要开始,慢慢去做,慢慢去积累,就会让你体会到仿真的重要性。在板子完成之前提前判断出容易出问题的位置,提前解决它,避免问题的发生。仿真做的多了,就会从根本上弄明白问题产生的原因,对自己设计能力的提高也会有很大帮助。
 
 
 
来源:网络
707 浏览

应对高速PCB设计的时序问题

设备硬件类 善思惟 2016-10-28 10:32 发表了文章 来自相关话题

对于广大PCB设计工程师而言,提到时序问题就感觉比较茫然。看到时序图,更是一头雾水,感觉时序问题特别深奥。其实在平常的设计中最常见的是各种等长关系,网上流传的Layout Guide也介绍了哪些线需要等长。那么是不是做到等长,就满足时序关系了呢?其实不一定,认真思考一下,在有些情况下,费尽心思做的等长反而可能是系统不工作、时序问题出错的罪魁祸首。

在具体介绍之前,大家可以思考一个问题:请列举平常设计中的常见等长要求?

1. 一般具有共性的回答是:PCI总线、CPCI总线和PCIX数据地址总线做到1000mil等长;有些回答甚至是500mil或是更小。

2. 对于SDRAM数据地址总线,这时有两种回答:

全部总线等长,等长要求在200mil以内(数值的回答并不关键。随着频率等因素数值也经常变化,以下的讨论相同。我们不关心具体要求是在多长以内,而是等长的类型)。

分组等长,D0~D7……,如果再问分组和什么选通(Strobe)做等长,答案更是千奇百怪(这个答案是被DDR影响了新的工程师已经很少有机会接触SDRAM了)。

3. DDR1、2、3:

数据线分组等长,DQ0~7+DQS数据组内20mil等长。

地址、控制、命令和CLK等长,范围稍微宽一些(±500mil左右)。

所有DQS和CLK等长,甚至使DDR3。做了Fly-by设计之后,继续要求等长关系。

4. PCIE差分组内等长在5mil以内;

5. PCIE差分组间等长在100mil(或者500mil)以内。

上面这些等长关系在工作中应该都有可能碰到,你是不是也是这么做的?有没有更深入思考过,哪些等长关系是不合理的?可以这么说,绝大部分等长设计都有相对应的时序关系;如果能够看懂相关的时序图,对等长设计将会更加清晰。上面列举等长要求的时候,其实做了分类。相对于高速总线的发展历史,其实就是三个大类:共同时钟的并行总线、源同步时钟的并行总线以及高速串行总线






接下来讨论绿色部分,也就是共同时钟的并行总线时序设计。或许有人会说,这都是过时的设计,并且200M以内的信号没有必要讨论,随便设计就好。其实,现在很多系统还会采用CPCI的构架,PCIX总线还在通信、工控等行业中大量采用。并且,共同时钟系统达到133M以上,时序设计非常困难。可以说如果没有真正理解时序设计的原理,你可能设计一个5G的PCIE2.0系统没有什么问题,而设计一个166M的PCIX系统,则会出现做一个失败一个的情况。系统完全无法运行在预期的频率上,而不得不降频使用。当然,这里面有两个原因:其一是每一代总线发展到瓶颈之后才会进入下一代总线。在各自的瓶颈上,时序裕量非常小,设计极为困难。其二,由于技术的发展,大家更多的关注DDR3,关注高速串行总线,共同时钟系统的研究越来越少,相应的总结文章也不常见。这就带来很多设计问题,也就是上面的回答里面SDRAM分组等长设计错误的原因。

首先,我们如何判断一个系统是共同时钟?方法很简单,找时钟树。确定时钟的关系是判断各种时序系统的关键。共同时钟系统一般有一个外部的晶振或者晶体,然后通过时钟分配器分别连接到系统的驱动端和接收端,由这个外部时钟线来控制系统的时序工作方式




      第一个时钟边沿在驱动端发送数据,第二个时钟边沿在接收端接收数据,为了保证数据的稳定可靠传输,需要满足一定的建立保持时间裕量。共同时钟的时序关系公式为:

     从公式可以直接得出结论,共同时钟的时序等长关系是一个范围,而不是等长。又因为飞行时间的最小时序要求一般都可以满足,也就是第二个公式在很多场合可以忽略不计,这样,PCB设计就只是需要符合第一个公式,结论就是走线越短越好。任何因为并不存在时序要求而做的整个总线绕等长而导致总线布线度增加和串扰增加的设计是错误的,失败的例子也非常多。
 
 
来源:网络 查看全部
对于广大PCB设计工程师而言,提到时序问题就感觉比较茫然。看到时序图,更是一头雾水,感觉时序问题特别深奥。其实在平常的设计中最常见的是各种等长关系,网上流传的Layout Guide也介绍了哪些线需要等长。那么是不是做到等长,就满足时序关系了呢?其实不一定,认真思考一下,在有些情况下,费尽心思做的等长反而可能是系统不工作、时序问题出错的罪魁祸首。

在具体介绍之前,大家可以思考一个问题:请列举平常设计中的常见等长要求?

1. 一般具有共性的回答是:PCI总线、CPCI总线和PCIX数据地址总线做到1000mil等长;有些回答甚至是500mil或是更小。

2. 对于SDRAM数据地址总线,这时有两种回答:

全部总线等长,等长要求在200mil以内(数值的回答并不关键。随着频率等因素数值也经常变化,以下的讨论相同。我们不关心具体要求是在多长以内,而是等长的类型)。

分组等长,D0~D7……,如果再问分组和什么选通(Strobe)做等长,答案更是千奇百怪(这个答案是被DDR影响了新的工程师已经很少有机会接触SDRAM了)。

3. DDR1、2、3:

数据线分组等长,DQ0~7+DQS数据组内20mil等长。

地址、控制、命令和CLK等长,范围稍微宽一些(±500mil左右)。

所有DQS和CLK等长,甚至使DDR3。做了Fly-by设计之后,继续要求等长关系。

4. PCIE差分组内等长在5mil以内;

5. PCIE差分组间等长在100mil(或者500mil)以内。

上面这些等长关系在工作中应该都有可能碰到,你是不是也是这么做的?有没有更深入思考过,哪些等长关系是不合理的?可以这么说,绝大部分等长设计都有相对应的时序关系;如果能够看懂相关的时序图,对等长设计将会更加清晰。上面列举等长要求的时候,其实做了分类。相对于高速总线的发展历史,其实就是三个大类:共同时钟的并行总线、源同步时钟的并行总线以及高速串行总线

QQ截图20161028095213.png


接下来讨论绿色部分,也就是共同时钟的并行总线时序设计。或许有人会说,这都是过时的设计,并且200M以内的信号没有必要讨论,随便设计就好。其实,现在很多系统还会采用CPCI的构架,PCIX总线还在通信、工控等行业中大量采用。并且,共同时钟系统达到133M以上,时序设计非常困难。可以说如果没有真正理解时序设计的原理,你可能设计一个5G的PCIE2.0系统没有什么问题,而设计一个166M的PCIX系统,则会出现做一个失败一个的情况。系统完全无法运行在预期的频率上,而不得不降频使用。当然,这里面有两个原因:其一是每一代总线发展到瓶颈之后才会进入下一代总线。在各自的瓶颈上,时序裕量非常小,设计极为困难。其二,由于技术的发展,大家更多的关注DDR3,关注高速串行总线,共同时钟系统的研究越来越少,相应的总结文章也不常见。这就带来很多设计问题,也就是上面的回答里面SDRAM分组等长设计错误的原因。

首先,我们如何判断一个系统是共同时钟?方法很简单,找时钟树。确定时钟的关系是判断各种时序系统的关键。共同时钟系统一般有一个外部的晶振或者晶体,然后通过时钟分配器分别连接到系统的驱动端和接收端,由这个外部时钟线来控制系统的时序工作方式
QQ截图20161028095227.png

      第一个时钟边沿在驱动端发送数据,第二个时钟边沿在接收端接收数据,为了保证数据的稳定可靠传输,需要满足一定的建立保持时间裕量。共同时钟的时序关系公式为:

     从公式可以直接得出结论,共同时钟的时序等长关系是一个范围,而不是等长。又因为飞行时间的最小时序要求一般都可以满足,也就是第二个公式在很多场合可以忽略不计,这样,PCB设计就只是需要符合第一个公式,结论就是走线越短越好。任何因为并不存在时序要求而做的整个总线绕等长而导致总线布线度增加和串扰增加的设计是错误的,失败的例子也非常多。
 
 
来源:网络
380 浏览

确保PCB设计成功的关键几步!

设备硬件类 广岛之恋 2016-10-26 08:16 发表了文章 来自相关话题

印刷电路板 (PCB) 是电子产品的躯体,最终产品的性能、寿命和可靠性依赖于其所构成的电气系统。如果设计得当,具有高质量电路的产品将具有较低的现场故障率和现场退货率。因此,产品的生产成本将更低,利润更高。为了按时生产高质量的 PCB 板,同时不增加设计时间且不产生代价高昂的返工,必须尽早在设计流程中发现设计和电路完整性问题。

为了把产品快速可靠地推向市场,利用设计工具实现设计流程自动化就显得十分必要,但如何才能确保设计获得成功呢?为了最大程度地提高设计效率和产品质量,应当关注哪些细节?设计工具显然应该直观易用且足够强大,以便克服复杂的设计挑战,但还有哪些事项值得注意?

第一步:不要停留于基本原理图输入

原理图输入对于生成设计的逻辑连接而言至关重要,其必须准确无误、简单易用且与布局集成为一体才能确保设计成功。

简单地输入原理图并将其传送到布局还不够。为了创建符合预期的高质量设计,需要确保使用最佳元件,并且可以执行仿真分析,从而保证设计在交付制造时不会出问题。







第二步:不要忽视库管理库

管理是设计流程的重要组成部分。为了快速选择最佳元件并将其放置在设计中,器件的简易创建和轻松管理就显得十分必要了。

PADS 允许您在一个库中维护所有设计任务,并可实时更新该库,以便于使用并确保设计开发的精确性。您可以通过单个电子表格来访问所有元器件信息,而无需担心数据冗余、多个库或耗时费力的工具开销。






第三步:有效管理设计约束规则

当今的关键高速设计异常复杂,如果没有有效的手段来管理约束规则,则对走线、拓扑和信号延迟等方面的设计、约束和管理将会变得异常困难。为了在第一次迭代中就构建出成功的产品,必须在设计流程的早期设置约束规则,以便设计达到要求的目标。良好的约束规则管理可防止您使用价格高昂或无法采购到的元件,并且最终确保电路板符合性能和制造要求。






第四步:确保您具备所需的布局能力

近年来,PCB 布局设计的复杂度显著高于以前。为了制造更小型、更便携的电子装置,设计的密度不得不提高。此外,工作频率也被提高,这就要求设计人员评估以前可能遭到忽略的电气特性以确保设计可用。为了跟上日益复杂的步伐,设计人员必须具备更广泛的能力,以便定义高级规则集,创建独特的射频形状并实施校正结构来改善设计的总体性能。

布局过程中,智能布局工具有助于创建高效的布置和布线策略。精密布置可减少设计后期的违规情况,让您能够能在少犯错误的情况下更快速地完成项目。






虽然一般使用手动布线来达到真实的设计意图,但将交互式布线与自动布线进行有效的搭配使用有助于满足市场时限要求,并能提高设计质量。自动布线还能帮助应对棘手的任务,如差分对布线、网络调整、制造优化、微过孔和增层技术等。如果事先规划好布线策略,使用自动布线的效率将大为提高。

另一个挑战是现代 PCB 要维护成千上万的网络,这可能会为在设计中的关键区域布线带来困难。避免这个问题的最佳办法是将网络线分成组,以便创建有效的布线策略。创建规划组后,便可标记并过滤网络组,以突出显示需要布线的关键网络。
 
 
 
来源:网络 查看全部
印刷电路板 (PCB) 是电子产品的躯体,最终产品的性能、寿命和可靠性依赖于其所构成的电气系统。如果设计得当,具有高质量电路的产品将具有较低的现场故障率和现场退货率。因此,产品的生产成本将更低,利润更高。为了按时生产高质量的 PCB 板,同时不增加设计时间且不产生代价高昂的返工,必须尽早在设计流程中发现设计和电路完整性问题。

为了把产品快速可靠地推向市场,利用设计工具实现设计流程自动化就显得十分必要,但如何才能确保设计获得成功呢?为了最大程度地提高设计效率和产品质量,应当关注哪些细节?设计工具显然应该直观易用且足够强大,以便克服复杂的设计挑战,但还有哪些事项值得注意?

第一步:不要停留于基本原理图输入

原理图输入对于生成设计的逻辑连接而言至关重要,其必须准确无误、简单易用且与布局集成为一体才能确保设计成功。

简单地输入原理图并将其传送到布局还不够。为了创建符合预期的高质量设计,需要确保使用最佳元件,并且可以执行仿真分析,从而保证设计在交付制造时不会出问题。

640.webp_(13)_.jpg



第二步:不要忽视库管理库

管理是设计流程的重要组成部分。为了快速选择最佳元件并将其放置在设计中,器件的简易创建和轻松管理就显得十分必要了。

PADS 允许您在一个库中维护所有设计任务,并可实时更新该库,以便于使用并确保设计开发的精确性。您可以通过单个电子表格来访问所有元器件信息,而无需担心数据冗余、多个库或耗时费力的工具开销。

640.jpg


第三步:有效管理设计约束规则

当今的关键高速设计异常复杂,如果没有有效的手段来管理约束规则,则对走线、拓扑和信号延迟等方面的设计、约束和管理将会变得异常困难。为了在第一次迭代中就构建出成功的产品,必须在设计流程的早期设置约束规则,以便设计达到要求的目标。良好的约束规则管理可防止您使用价格高昂或无法采购到的元件,并且最终确保电路板符合性能和制造要求。

640_(1).jpg


第四步:确保您具备所需的布局能力

近年来,PCB 布局设计的复杂度显著高于以前。为了制造更小型、更便携的电子装置,设计的密度不得不提高。此外,工作频率也被提高,这就要求设计人员评估以前可能遭到忽略的电气特性以确保设计可用。为了跟上日益复杂的步伐,设计人员必须具备更广泛的能力,以便定义高级规则集,创建独特的射频形状并实施校正结构来改善设计的总体性能。

布局过程中,智能布局工具有助于创建高效的布置和布线策略。精密布置可减少设计后期的违规情况,让您能够能在少犯错误的情况下更快速地完成项目。

640.webp_(14)_.jpg


虽然一般使用手动布线来达到真实的设计意图,但将交互式布线与自动布线进行有效的搭配使用有助于满足市场时限要求,并能提高设计质量。自动布线还能帮助应对棘手的任务,如差分对布线、网络调整、制造优化、微过孔和增层技术等。如果事先规划好布线策略,使用自动布线的效率将大为提高。

另一个挑战是现代 PCB 要维护成千上万的网络,这可能会为在设计中的关键区域布线带来困难。避免这个问题的最佳办法是将网络线分成组,以便创建有效的布线策略。创建规划组后,便可标记并过滤网络组,以突出显示需要布线的关键网络。
 
 
 
来源:网络
973 浏览

(干货)PCB正片和负片的较量,二者有什么区别

设备硬件类 嗡班匝萨埵吽 2016-10-19 10:26 发表了文章 来自相关话题

【导读】印制电路板,PCB( Printed Circuit Board),又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。本文将为你诠释PCB正片和负片的区别,以及PCB负片使用场合。PCB在电子产业这么“火”的原因,在这里你都可以找到答案。

PCB为什么能够广泛使用?

PCB之所以能得到越来越广泛地应用,因为它有很多独特优点,概栝如下。

可高密度化。数十年来,印制板高密度能够随着集成电路集成度提高和安装技术进步而发展着。

高可靠性。通过一系列检查、测试和老化试验等可保证PCB长期(使用期,一般为20年)而可靠地工作着。

可设计性。对PCB各种性能(电气、物理、化学、机械等)要求,可以通过设计标准化、规范化等来实现印制板设计,时间短、效率高。

可生产性。采用现代化管理,可进行标准化、规模(量)化、自动化等生产、保证产品质量一致性。

可测试性。建立了比较完整测试方法、测试标准、各种测试设备与仪器等来检测并鉴定PCB产品合格性和使用寿命。

可组装性。PCB产品既便于各种元件进行标准化组装,又可以进行自动化、规模化批量生产。同时,PCB和各种元件组装部件还可组装形成更大部件、系统,直至整机。

可维护性。由于PCB产品和各种元件组装部件是以标准化设计与规模化生产,因而,这些部件也是标准化。所以,一旦系统发生故障,可以快速、方便、灵活地进行更换,迅速恢服系统工作。当然,还可以举例说得更多些。如使系统小型化、轻量化,信号传输高速化等。

PCB正片和负片的区别

概念:正片和负片是底片的两种不同类型。正片:简单地说就是,在底片上看到什么就有什么。负片:正好相反,看到的就是没有的,看不到的就是有的。




正片和负片只是指一个层的两种不同的显示效果。无论你这一层是设置正片还是负片,作出来的PCB板是一样的。只是在cadence处理的过程中,数据量,DRC检测,以及软件的处理过程不同而已。它们的具体区别如下: 

最终效果的差别

1、PCB正片和负片是最终效果是相反的制造工艺。

PCB正片的效果:凡是画线的地方印刷板的铜被保留,没有画线的地方敷铜被清除。如顶层、底层...的信号层就是正片。

PCB负片的效果:凡是画线的地方印刷板的敷铜被清除,没有画线的地方敷铜反而被保留。Internal Planes层(内部电源/接地层)(简称内电层),用于布置电源线和地线。放置在这些层面上的走线或其他对象是无铜的区域,也即这个工作层是负片的。

输出工艺的差别
 
2、负片:一般是我们讲的tenting制程,其使用的药液为酸性蚀刻





负片是因为底片制作出来后,要的线路或铜面是透明的,而不要的部份则为黑色或棕色的,经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,于是在蚀刻制程中仅咬蚀干膜冲掉部份的铜箔(底片黑色或棕色的部份),而保留干膜未被冲掉属于我们要的线路(底片透明的部份),去膜以后就留下了我们所需要的线路,在这种制程中膜对孔要掩盖,其曝光的要求和对膜的要求稍高一些,但其制造的流程速度快。

正片:一般是我们讲的pattern制程,其使用的药液为碱性蚀刻
 
正片若以底片来看,要的线路或铜面是黑色或棕色的,而不要部份则为透明的,同样地经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,接着是镀锡铅的制程,把锡铅镀在前一制程(显影)干膜冲掉的铜面上,然后作去膜的动作(去除因光照而硬化的干膜),而在下一制程蚀刻中,用碱性药水咬掉没有锡铅保护的铜箔(底片透明的部份),剩下的就是我们要的线路(底片黑色或棕色的部份)。

注意*:在实际布线上,电源层使用负片,会带来很多便捷,但是有的公司会要求电源层也用正片来处理,因为负片在的逻辑与平时布线相反,如果没有划分好负片网络很可能出现死铜,这对整个板子信号会带来影响的。尤其是电源层出现多个电源,在整个板子有 1,2V,2.5V,3.3V,5V 数模混合电源,容易导致电源分割失误、在分割时采用 P+L 划分不同网络的区域。

应用好处及应用场合
 
3、负片就是为了减小文件尺寸减小计算量用的。有铜的地方不显示,没铜的地方显示。这个在地层电源层能显著减小数据量和电脑显示负担。不过现在的电脑配置对这点工作量已经不在话下了,我觉得不太推荐负片使用,容易出错。焊盘没设计好有可能短路什么的。

电源分割方便的话,方法有很多,正片也可以用其他方法很方便的进行电源分割,没必要一定用负片。

pcb设计时,如何区分正片和负片?






但是,不管是正片还是负片,在设置焊盘时都要注意——

在制作pad时,最好把flash做好,把三个参数全部设置上,无论你做正片还是负片,都是一劳永逸。如果不用负片,那么,可以不设置flash。

在做焊盘时,如果内层不做花焊盘,那么在多层板电源层是负片情况下就不会有花焊盘出现,必须前面做了花焊盘才会有。反过来,如果前期做了,但出图的时候不想要花焊盘,可以直接在art work负片中设置去掉花焊盘。

当然电源层也可以采用正片直接铺铜的方式,铺洞时设置孔的连着方式等参数,也可达到花焊盘的效果,这样在做焊盘的时候不做花焊盘也可以通过设置孔的连接方式达到花焊盘的效果。设置方法:shape—global dynamic parameter-Thermal relief connects 里进行相应设置。

每个管脚可以拥有所有类型的pad:

Regular

thermal relief

anti-pad and custom shapes


这些pad将应用于设计中的各个走线层。对于artwork层中的负片,allegro将使用thermal relief和anti-pad。而对于正片,allegro只使用Regular pad。这些工作是allegro在生成光绘文件时,自动选择的。

每一层中都有可能指定Regular Thermal relief及Anti-pad是出于以下考虑:在出光绘文件时,当该层中与该焊盘相连通的是一般走线,那么,在正片布线层中,Allegro将决定使用Regular焊盘。如果是敷铜,则使用Thermal relief焊盘,如果不能与之相连,则使用Anti-pad。具体使用由Allegro决定。
 
 
来源:网络 查看全部
【导读】印制电路板,PCB( Printed Circuit Board),又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。本文将为你诠释PCB正片和负片的区别,以及PCB负片使用场合。PCB在电子产业这么“火”的原因,在这里你都可以找到答案。

PCB为什么能够广泛使用?

PCB之所以能得到越来越广泛地应用,因为它有很多独特优点,概栝如下。

可高密度化。数十年来,印制板高密度能够随着集成电路集成度提高和安装技术进步而发展着。

高可靠性。通过一系列检查、测试和老化试验等可保证PCB长期(使用期,一般为20年)而可靠地工作着。

可设计性。对PCB各种性能(电气、物理、化学、机械等)要求,可以通过设计标准化、规范化等来实现印制板设计,时间短、效率高。

可生产性。采用现代化管理,可进行标准化、规模(量)化、自动化等生产、保证产品质量一致性。

可测试性。建立了比较完整测试方法、测试标准、各种测试设备与仪器等来检测并鉴定PCB产品合格性和使用寿命。

可组装性。PCB产品既便于各种元件进行标准化组装,又可以进行自动化、规模化批量生产。同时,PCB和各种元件组装部件还可组装形成更大部件、系统,直至整机。

可维护性。由于PCB产品和各种元件组装部件是以标准化设计与规模化生产,因而,这些部件也是标准化。所以,一旦系统发生故障,可以快速、方便、灵活地进行更换,迅速恢服系统工作。当然,还可以举例说得更多些。如使系统小型化、轻量化,信号传输高速化等。

PCB正片和负片的区别

概念:正片和负片是底片的两种不同类型。正片:简单地说就是,在底片上看到什么就有什么。负片:正好相反,看到的就是没有的,看不到的就是有的。
0_(1).gif

正片和负片只是指一个层的两种不同的显示效果。无论你这一层是设置正片还是负片,作出来的PCB板是一样的。只是在cadence处理的过程中,数据量,DRC检测,以及软件的处理过程不同而已。它们的具体区别如下: 

最终效果的差别

1、PCB正片和负片是最终效果是相反的制造工艺。

PCB正片的效果:凡是画线的地方印刷板的铜被保留,没有画线的地方敷铜被清除。如顶层、底层...的信号层就是正片。

PCB负片的效果:凡是画线的地方印刷板的敷铜被清除,没有画线的地方敷铜反而被保留。Internal Planes层(内部电源/接地层)(简称内电层),用于布置电源线和地线。放置在这些层面上的走线或其他对象是无铜的区域,也即这个工作层是负片的。

输出工艺的差别
 
2、负片:一般是我们讲的tenting制程,其使用的药液为酸性蚀刻

640.webp_(17)_.jpg

负片是因为底片制作出来后,要的线路或铜面是透明的,而不要的部份则为黑色或棕色的,经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,于是在蚀刻制程中仅咬蚀干膜冲掉部份的铜箔(底片黑色或棕色的部份),而保留干膜未被冲掉属于我们要的线路(底片透明的部份),去膜以后就留下了我们所需要的线路,在这种制程中膜对孔要掩盖,其曝光的要求和对膜的要求稍高一些,但其制造的流程速度快。

正片:一般是我们讲的pattern制程,其使用的药液为碱性蚀刻
 
正片若以底片来看,要的线路或铜面是黑色或棕色的,而不要部份则为透明的,同样地经过线路制程曝光后,透明部份因干膜阻剂受光照而起化学作用硬化,接下来的显影制程会把没有硬化的干膜冲掉,接着是镀锡铅的制程,把锡铅镀在前一制程(显影)干膜冲掉的铜面上,然后作去膜的动作(去除因光照而硬化的干膜),而在下一制程蚀刻中,用碱性药水咬掉没有锡铅保护的铜箔(底片透明的部份),剩下的就是我们要的线路(底片黑色或棕色的部份)。

注意*:在实际布线上,电源层使用负片,会带来很多便捷,但是有的公司会要求电源层也用正片来处理,因为负片在的逻辑与平时布线相反,如果没有划分好负片网络很可能出现死铜,这对整个板子信号会带来影响的。尤其是电源层出现多个电源,在整个板子有 1,2V,2.5V,3.3V,5V 数模混合电源,容易导致电源分割失误、在分割时采用 P+L 划分不同网络的区域。

应用好处及应用场合
 
3、负片就是为了减小文件尺寸减小计算量用的。有铜的地方不显示,没铜的地方显示。这个在地层电源层能显著减小数据量和电脑显示负担。不过现在的电脑配置对这点工作量已经不在话下了,我觉得不太推荐负片使用,容易出错。焊盘没设计好有可能短路什么的。

电源分割方便的话,方法有很多,正片也可以用其他方法很方便的进行电源分割,没必要一定用负片。

pcb设计时,如何区分正片和负片?

0_(2).gif


但是,不管是正片还是负片,在设置焊盘时都要注意——

在制作pad时,最好把flash做好,把三个参数全部设置上,无论你做正片还是负片,都是一劳永逸。如果不用负片,那么,可以不设置flash。

在做焊盘时,如果内层不做花焊盘,那么在多层板电源层是负片情况下就不会有花焊盘出现,必须前面做了花焊盘才会有。反过来,如果前期做了,但出图的时候不想要花焊盘,可以直接在art work负片中设置去掉花焊盘。

当然电源层也可以采用正片直接铺铜的方式,铺洞时设置孔的连着方式等参数,也可达到花焊盘的效果,这样在做焊盘的时候不做花焊盘也可以通过设置孔的连接方式达到花焊盘的效果。设置方法:shape—global dynamic parameter-Thermal relief connects 里进行相应设置。

每个管脚可以拥有所有类型的pad:

Regular

thermal relief

anti-pad and custom shapes


这些pad将应用于设计中的各个走线层。对于artwork层中的负片,allegro将使用thermal relief和anti-pad。而对于正片,allegro只使用Regular pad。这些工作是allegro在生成光绘文件时,自动选择的。

每一层中都有可能指定Regular Thermal relief及Anti-pad是出于以下考虑:在出光绘文件时,当该层中与该焊盘相连通的是一般走线,那么,在正片布线层中,Allegro将决定使用Regular焊盘。如果是敷铜,则使用Thermal relief焊盘,如果不能与之相连,则使用Anti-pad。具体使用由Allegro决定。
 
 
来源:网络
674 浏览

【知识分享】详解PCB设计中各层的意义

电气控制类 我是谁 2016-09-10 21:55 发表了文章 来自相关话题

      1、信号层(Signal Layers)

      Altium Designer最多可提供32个信号层,包括顶层(Top Layer)、底层(Bottom Layer)和中间层(Mid-Layer)。各层之间可通过通孔(Via)、盲孔(Blind Via)和埋孔(Buried Via)实现互相连接。






      (1)、顶层信号层(Top Layer)

      也称元件层,主要用来放置元器件,对于双层板和多层板可以用来布置导线或覆铜。

      (2)、底层信号层(Bottom Layer)

      也称焊接层,主要用于布线及焊接,对于双层板和多层板可以用来放置元器件。

      (3)中间信号层(Mid-Layers)

      最多可有30层,在多层板中用于布置信号线,这里不包括电源线和地线。

     2、内部电源层(Internal Planes)

      通常简称为内电层,仅在多层板中出现,PCB板层数一般是指信号层和内电层相加的总和数。与信号层相同,内电层与内电层之间、内电层与信号层之间可通过通孔、盲孔和埋孔实现互相连接。






      3、丝印层(Silkscreen Layers)

      一块PCB板最多可以有2个丝印层,分别是顶层丝印层(Top Overlay)和底层丝印层(Bottom Overlay),一般为白色,主要用于放置印制信息,如元器件的轮廓和标注,各种注释字符等,方便PCB的元器件焊接和电路检查。

      (1)顶层丝印层(Top Overlay)

      用于标注元器件的投影轮廓、元器件的标号、标称值或型号以及各种注释字符。

      (2)底层丝印层(Bottom Overlay)

      与顶层丝印层相同,若所有标注在顶层丝印层都已经包含,底层丝印层可关闭。

      4、机械层(Mechanical Layers)

      机械层,一般用于放置有关制板和装配方法的指示性信息,如PCB的外形尺寸、尺寸标记、数据资料、过孔信息、装配说明等信息。这些信息因设计公司或PCB制造厂家的要求而有所不同,下面举例说明我们的常用方法。

      Mechanical 1:一般用来绘制PCB的边框,作为其机械外形,故也称为外形层;

      Mechanical 2:我们用来放置PCB加工工艺要求表格,包括尺寸、板材、板层等信息;

      Mechanical 13 & Mechanical 15:ETM库中大多数元器件的本体尺寸信息,包括元器件的三维模型;为了页面的简洁,该层默认未显示;

      Mechanical 16:ETM库中大多数元器件的占位面积信息,在项目早期可用来估算PCB尺寸;为了页面的简洁,该层默认未显示,而且颜色为黑色。

      5、遮蔽层(Mask Layers)

      Altium Designer提供了阻焊层(Solder Mask)和锡膏层(Paste Mask)两种类型的遮蔽层(Mask Layers),在其中分别有顶层和底层两层,这里就不详细介绍了。
文章来源于网络 查看全部

3.PNG


      1、信号层(Signal Layers)

      Altium Designer最多可提供32个信号层,包括顶层(Top Layer)、底层(Bottom Layer)和中间层(Mid-Layer)。各层之间可通过通孔(Via)、盲孔(Blind Via)和埋孔(Buried Via)实现互相连接。

3.1_.PNG


      (1)、顶层信号层(Top Layer)

      也称元件层,主要用来放置元器件,对于双层板和多层板可以用来布置导线或覆铜。

      (2)、底层信号层(Bottom Layer)

      也称焊接层,主要用于布线及焊接,对于双层板和多层板可以用来放置元器件。

      (3)中间信号层(Mid-Layers)

      最多可有30层,在多层板中用于布置信号线,这里不包括电源线和地线。

     2、内部电源层(Internal Planes)

      通常简称为内电层,仅在多层板中出现,PCB板层数一般是指信号层和内电层相加的总和数。与信号层相同,内电层与内电层之间、内电层与信号层之间可通过通孔、盲孔和埋孔实现互相连接。

3.2_.PNG


      3、丝印层(Silkscreen Layers)

      一块PCB板最多可以有2个丝印层,分别是顶层丝印层(Top Overlay)和底层丝印层(Bottom Overlay),一般为白色,主要用于放置印制信息,如元器件的轮廓和标注,各种注释字符等,方便PCB的元器件焊接和电路检查。

      (1)顶层丝印层(Top Overlay)

      用于标注元器件的投影轮廓、元器件的标号、标称值或型号以及各种注释字符。

      (2)底层丝印层(Bottom Overlay)

      与顶层丝印层相同,若所有标注在顶层丝印层都已经包含,底层丝印层可关闭。

      4、机械层(Mechanical Layers)

      机械层,一般用于放置有关制板和装配方法的指示性信息,如PCB的外形尺寸、尺寸标记、数据资料、过孔信息、装配说明等信息。这些信息因设计公司或PCB制造厂家的要求而有所不同,下面举例说明我们的常用方法。

      Mechanical 1:一般用来绘制PCB的边框,作为其机械外形,故也称为外形层;

      Mechanical 2:我们用来放置PCB加工工艺要求表格,包括尺寸、板材、板层等信息;

      Mechanical 13 & Mechanical 15:ETM库中大多数元器件的本体尺寸信息,包括元器件的三维模型;为了页面的简洁,该层默认未显示;

      Mechanical 16:ETM库中大多数元器件的占位面积信息,在项目早期可用来估算PCB尺寸;为了页面的简洁,该层默认未显示,而且颜色为黑色。

      5、遮蔽层(Mask Layers)

      Altium Designer提供了阻焊层(Solder Mask)和锡膏层(Paste Mask)两种类型的遮蔽层(Mask Layers),在其中分别有顶层和底层两层,这里就不详细介绍了。
文章来源于网络