本月累计签到次数:

今天获取 积分

自由度

自由度

418 浏览

为什么人机协作机械手是7个自由度,而不是6个?

机械自动化类 泡泡鱼 2017-03-22 16:42 发表了文章 来自相关话题

现在用的最多的工业机器人,一般都是六轴的,但是最近推出来的人机协作机械臂,却有7个自由度,一直想不明白为什么。直到最近看到知乎上的一个问题:人的手臂(腕关节到肩关节)有几个自由度?才发现,原来7个自由度是对人手臂的真实还原。


人的手臂(腕关节到肩关节)有几个自由度?我想绝大部分人都没有想过,更别说去了解有哪几个自由度,即使是学工科的人,也未必能解释清楚。没想到知乎上居然有人把这个问题回答的这么专业有内涵,同时又那么有哲理,忍不住想要把这个答案分享一下。




回答这个问题的是知乎网友杨硕,答案如下:


实话说,我对robot manipulation还是挺熟的,但是楼上几个答案一眼看去都看不懂。不是黑,而是觉得对非专业人士来说不好理解。


我来尽量用通俗的语言解释一下。


首先,问题的答案是:数一下就行了啊!






7个自由度。



有人问5,6是不是一样的。5是拧钥匙时唯一要转动的关节,动力来自小臂两根桡骨的扭转;6是把鼠标放在桌面用手转时唯一要转动的关节,动力来自手腕的旋转。






至于为什么人手臂是7个自由度,而不是8个也不是6个,可能是因为上帝非常懂机器人控制,下面尽量简单地介绍一下。



首先介绍一个定理:

6个自由度的机械手,在空间中无法在保持末端机构的三维位置不变的情况下从一个构型变换到另一个构型。


这个定理乍一看很不好理解,可以考虑一个更简单的情况:






在这张图上,一个机器人的手臂由基座、两个关节、两根连接件构成(想象把一个圆规打开,然后把一端用手指捏住)。


请问我们能够把机器人在保持上部末端机构在平面上位置不变的情况下,从“lefty”这个状态扭到“righty”这个状态吗?


答案是不行的,不管怎么动两个关节,移动过程中末端机构的位置肯定是要变的。看官也可以拿两根笔在桌子上动一动试试。


同样地,一个6自由度的机械手,即使某两组构型对应的末端机构的三维位置相同,机械手在从一个构型移动到另一个构型的时候无法保持末端机构始终不动。


如果有人在电视里看过工业机器人焊东西的话,就会发现它在同一个位置焊接的时候,一会儿整个扭到这边,一会儿整个扭到那边,看起来非常酷炫的样子。


事实上这么做只是因为,虽然焊接只是想改变末端机构的朝向,而不改变末端机构的位置,但是由于定理的限制,它必须要往后退一些,然后各种扭,才能保证在移动末端机构的朝向的过程中不会撞到东西,因为移动的时候末端机构的三维位置一定会乱动。如果它能够随便转一点点就可以达到目的,还费那个力气酷炫地整体都转起来干啥……


而多了一个自由度以后就不一样了。


想想开门时拧钥匙的动作,这个情况下是人胳膊的末端机构(手)的三维位置没有变(始终在钥匙孔前),但是末端机构(手)的三维旋转变了(转动了钥匙)。人能够实现这个简单的动作,就是因为我们的胳膊有7个自由度。


说到这里,看官可能会看出来了,哎我懂了,我的末端机构有6个自由度(三维位置,三维旋转),而胳膊作为一个机械手,有7个自由度,这两个自由度好像说的不是一回事,但是数量上7-6=1,所以这1个自由度我能拿来拧钥匙。


如果上帝把我们的胳膊设计成6个自由度的话,人拧钥匙的动作一定会非常浮夸。大家可以在拧钥匙的时候不要转手腕,感受一下。


那么为什么不再多给我们一些自由度呢?


因为自由度越多,机械手刚性越差。如果我们的胳膊有8个自由度,那么受伤的概率会更加很多。虽然没有什么生物学研究证明这一点(世界上没有8个自由度的生物躯体),但是机器人的研究是可以证明这个问题的。
 
 
 
 
跟多内容请关注:www.imefuture.com
 
 
来源:AMT 制造业生态圈 查看全部
1.JPG


现在用的最多的工业机器人,一般都是六轴的,但是最近推出来的人机协作机械臂,却有7个自由度,一直想不明白为什么。直到最近看到知乎上的一个问题:人的手臂(腕关节到肩关节)有几个自由度?才发现,原来7个自由度是对人手臂的真实还原。


人的手臂(腕关节到肩关节)有几个自由度?我想绝大部分人都没有想过,更别说去了解有哪几个自由度,即使是学工科的人,也未必能解释清楚。没想到知乎上居然有人把这个问题回答的这么专业有内涵,同时又那么有哲理,忍不住想要把这个答案分享一下。




回答这个问题的是知乎网友杨硕,答案如下:


实话说,我对robot manipulation还是挺熟的,但是楼上几个答案一眼看去都看不懂。不是黑,而是觉得对非专业人士来说不好理解。


我来尽量用通俗的语言解释一下。


首先,问题的答案是:数一下就行了啊!

2.jpg


7个自由度。



有人问5,6是不是一样的。5是拧钥匙时唯一要转动的关节,动力来自小臂两根桡骨的扭转;6是把鼠标放在桌面用手转时唯一要转动的关节,动力来自手腕的旋转。

3.JPG


至于为什么人手臂是7个自由度,而不是8个也不是6个,可能是因为上帝非常懂机器人控制,下面尽量简单地介绍一下。



首先介绍一个定理:

6个自由度的机械手,在空间中无法在保持末端机构的三维位置不变的情况下从一个构型变换到另一个构型。


这个定理乍一看很不好理解,可以考虑一个更简单的情况:

4.JPG


在这张图上,一个机器人的手臂由基座、两个关节、两根连接件构成(想象把一个圆规打开,然后把一端用手指捏住)。


请问我们能够把机器人在保持上部末端机构在平面上位置不变的情况下,从“lefty”这个状态扭到“righty”这个状态吗?


答案是不行的,不管怎么动两个关节,移动过程中末端机构的位置肯定是要变的。看官也可以拿两根笔在桌子上动一动试试。


同样地,一个6自由度的机械手,即使某两组构型对应的末端机构的三维位置相同,机械手在从一个构型移动到另一个构型的时候无法保持末端机构始终不动。


如果有人在电视里看过工业机器人焊东西的话,就会发现它在同一个位置焊接的时候,一会儿整个扭到这边,一会儿整个扭到那边,看起来非常酷炫的样子。


事实上这么做只是因为,虽然焊接只是想改变末端机构的朝向,而不改变末端机构的位置,但是由于定理的限制,它必须要往后退一些,然后各种扭,才能保证在移动末端机构的朝向的过程中不会撞到东西,因为移动的时候末端机构的三维位置一定会乱动。如果它能够随便转一点点就可以达到目的,还费那个力气酷炫地整体都转起来干啥……


而多了一个自由度以后就不一样了。


想想开门时拧钥匙的动作,这个情况下是人胳膊的末端机构(手)的三维位置没有变(始终在钥匙孔前),但是末端机构(手)的三维旋转变了(转动了钥匙)。人能够实现这个简单的动作,就是因为我们的胳膊有7个自由度。


说到这里,看官可能会看出来了,哎我懂了,我的末端机构有6个自由度(三维位置,三维旋转),而胳膊作为一个机械手,有7个自由度,这两个自由度好像说的不是一回事,但是数量上7-6=1,所以这1个自由度我能拿来拧钥匙。


如果上帝把我们的胳膊设计成6个自由度的话,人拧钥匙的动作一定会非常浮夸。大家可以在拧钥匙的时候不要转手腕,感受一下。


那么为什么不再多给我们一些自由度呢?


因为自由度越多,机械手刚性越差。如果我们的胳膊有8个自由度,那么受伤的概率会更加很多。虽然没有什么生物学研究证明这一点(世界上没有8个自由度的生物躯体),但是机器人的研究是可以证明这个问题的。
 
 
 
 
跟多内容请关注:www.imefuture.com
 
 
来源:AMT 制造业生态圈
467 浏览

你真的懂这是几轴吗?还是先从自由度学起吧,一篇文章全搞懂

电气控制类 我是谁 2016-09-18 16:55 发表了文章 来自相关话题

自由度是机器人的一个重要技术指标,它是由机器人的结构决定的,并直接影响到机器人的机动性。对于自由度的概念,机械专业的大牛可能是如数家珍,但对于大多数外行人却是丈二的和尚摸不着头脑,小编不是机械专业,但对自由度也很感兴趣,今天小编斗胆为大家讲一讲机器人的自由度,讲得不对或遗漏的地方,还请各位大牛多多指教。


1 刚体的自由度

自由度指物体能够对坐标系进行独立运动的数目,物体所能进行的运动如下图:






一个物体可以相对于坐标系,进行三个平移和三个旋转运动,即一个简单的物体有六个自由度。
 
 
2 运动副与关节

运动副是两构件直接接触并能产生相对运动的活动联接。运动副引入约束进而限制6个自由度中的某些自由度。在机器人学中,运动副也成为机器人的关节。






上图中列举了一些简单的运动副,按由上及下,由左及右的顺序依次为移动副、转动副、螺旋副、凸轮和球铰。移动副限制了一个方向移动的所有自由度,因而它只剩下一个自由度;转动副限制了一个方向转动以外的所有自由度,它也只剩下一个自由度;最后一个球铰引入3个约束,限制了所有方向的移动,因而只具有x、y和z轴方向的转动,即3个自由度。








3 机器人的自由度

机器人的自由度是指机器人所具有的独立坐标轴运动的数目,但一般不包括手部(末端操作器)的开合自由度。自由度表示了机器人动作灵活的尺度,但也不是自由度越多越好。因为随着自由度的增加,其结构也会变得更加复杂。






上图中,展示了一个简单的机械结构的动作图,关于它的自由度数,我们可以通过下图来计算。因而可以得出,这是一个简单的3自由度的机械臂。







4 机器人自由度的完美诠释

和电路一样,机器人的自由度也有串并联之分,它们之间的区别在哪呢?举一个简单的例子,串联机器人像是我们用一只手拿起一个东西,并联机器人就相当于两个手一起端一个东西。从我们生活经验来看(读者们可以自己端个杯子试试),并联机器人具有刚度大、承载能力强、精度高、末端件惯性小等优点,串联机器人具有结构简单、控制简单、运动空间大等优点。

而关于机器人自由度的完美诠释,我们举两个例子。

串联机器人--7自由度机械臂

一般来讲,由之前我们所讲的刚体的自由度来看,6自由度的机械臂已经足够确定末端物体的位姿,那为什么还要增加一个冗余自由度呢?先看一个有趣的例子。











上图为人的手臂自由度剖析图,除去末端手指的自由自由度,这恰好也是7个自由度。如果我们把上图分解为一个个转动副的关节,便可以得到下面的数学模型






也许这就是上帝在创造人类的鬼斧神工之处,每一种生物体完美的立体结构都可以为我们创造机器人带来灵感。那么为什么上帝多为我们的手臂创造了七个自由度而不是六个呢?关于它的答案有特别学术的解释:改善运动学特性(奇异构型、关节位移超限、工作环境中存在的障碍);改善动力学特性(七轴机器人可以实现关节力矩的再分配,使整个机器人的力矩分配均匀合理);容错性(即使有一个关节失效,还可以继续正常工作)。

但这里我并不想罗列那些普通人看不懂的术语,我们只看一个大家肉眼看得见的优势:






6 自由度机器人







7 自由度机器人

上图中,7自由度机器人可以实现不改变末端位置,只改变机械臂姿态。这对于6自由度机器人来说是无法实现的。

并联机器人--6自由度Stewart平台

Stewart平台,是1965年德国人Stewart发明了的,当时是作为飞行模拟器用于训练飞行员。一个Stewart平台由6个独立控制的伸缩杆组成,两端分别连接着固定基座和可动平台。通过复杂的数学运算,控制各个伸缩连杆的长度和姿态,从而使可动平台实现6个自由度的精确移动。






Stewart平台并联机构已经在航空、航天、海底作业、地下开采、制造装配等行业有着广泛的应用,但小编要给大家看的是下面这个:











上面是一个水平架设的神奇板子,一个金属球,一只手,一个遥控器—不管我们把球扔在板子上哪个角落,怎么摆弄,板子都能稳稳托住球,利用细微的运动将球引导到指定的位置,这个位置可以是板子正中,也可以通过遥控来随意改变。这或许就可以称作万能的平衡吧。

并联机器人相比于串联机器人起步较晚,目前还有许多悬而未决的问题,这一点也不影响它的机械魅力,以及在实际中的完美应用。只希望各位大牛能快点攻克各类问题,把我们的机械变得更完美。
 
 
 
 
文章来源于 机器人大讲堂智造家平台提供 查看全部
自由度是机器人的一个重要技术指标,它是由机器人的结构决定的,并直接影响到机器人的机动性。对于自由度的概念,机械专业的大牛可能是如数家珍,但对于大多数外行人却是丈二的和尚摸不着头脑,小编不是机械专业,但对自由度也很感兴趣,今天小编斗胆为大家讲一讲机器人的自由度,讲得不对或遗漏的地方,还请各位大牛多多指教。


1 刚体的自由度

自由度指物体能够对坐标系进行独立运动的数目,物体所能进行的运动如下图:

1.0_.PNG


一个物体可以相对于坐标系,进行三个平移和三个旋转运动,即一个简单的物体有六个自由度。
 
 
2 运动副与关节

运动副是两构件直接接触并能产生相对运动的活动联接。运动副引入约束进而限制6个自由度中的某些自由度。在机器人学中,运动副也成为机器人的关节。

1.1_.gif


上图中列举了一些简单的运动副,按由上及下,由左及右的顺序依次为移动副、转动副、螺旋副、凸轮和球铰。移动副限制了一个方向移动的所有自由度,因而它只剩下一个自由度;转动副限制了一个方向转动以外的所有自由度,它也只剩下一个自由度;最后一个球铰引入3个约束,限制了所有方向的移动,因而只具有x、y和z轴方向的转动,即3个自由度。

1.2_.gif




3 机器人的自由度

机器人的自由度是指机器人所具有的独立坐标轴运动的数目,但一般不包括手部(末端操作器)的开合自由度。自由度表示了机器人动作灵活的尺度,但也不是自由度越多越好。因为随着自由度的增加,其结构也会变得更加复杂。

11.gif


上图中,展示了一个简单的机械结构的动作图,关于它的自由度数,我们可以通过下图来计算。因而可以得出,这是一个简单的3自由度的机械臂。

11.1_.PNG



4 机器人自由度的完美诠释

和电路一样,机器人的自由度也有串并联之分,它们之间的区别在哪呢?举一个简单的例子,串联机器人像是我们用一只手拿起一个东西,并联机器人就相当于两个手一起端一个东西。从我们生活经验来看(读者们可以自己端个杯子试试),并联机器人具有刚度大、承载能力强、精度高、末端件惯性小等优点,串联机器人具有结构简单、控制简单、运动空间大等优点。

而关于机器人自由度的完美诠释,我们举两个例子。

串联机器人--7自由度机械臂

一般来讲,由之前我们所讲的刚体的自由度来看,6自由度的机械臂已经足够确定末端物体的位姿,那为什么还要增加一个冗余自由度呢?先看一个有趣的例子。

1.51_.PNG


1.52_.PNG


上图为人的手臂自由度剖析图,除去末端手指的自由自由度,这恰好也是7个自由度。如果我们把上图分解为一个个转动副的关节,便可以得到下面的数学模型

1.6_.PNG


也许这就是上帝在创造人类的鬼斧神工之处,每一种生物体完美的立体结构都可以为我们创造机器人带来灵感。那么为什么上帝多为我们的手臂创造了七个自由度而不是六个呢?关于它的答案有特别学术的解释:改善运动学特性(奇异构型、关节位移超限、工作环境中存在的障碍);改善动力学特性(七轴机器人可以实现关节力矩的再分配,使整个机器人的力矩分配均匀合理);容错性(即使有一个关节失效,还可以继续正常工作)。

但这里我并不想罗列那些普通人看不懂的术语,我们只看一个大家肉眼看得见的优势:

11.2_.gif


6 自由度机器人


1.8_.gif


7 自由度机器人

上图中,7自由度机器人可以实现不改变末端位置,只改变机械臂姿态。这对于6自由度机器人来说是无法实现的。

并联机器人--6自由度Stewart平台

Stewart平台,是1965年德国人Stewart发明了的,当时是作为飞行模拟器用于训练飞行员。一个Stewart平台由6个独立控制的伸缩杆组成,两端分别连接着固定基座和可动平台。通过复杂的数学运算,控制各个伸缩连杆的长度和姿态,从而使可动平台实现6个自由度的精确移动。

1.9_.gif


Stewart平台并联机构已经在航空、航天、海底作业、地下开采、制造装配等行业有着广泛的应用,但小编要给大家看的是下面这个:

1.10_.gif


1.11_.gif


上面是一个水平架设的神奇板子,一个金属球,一只手,一个遥控器—不管我们把球扔在板子上哪个角落,怎么摆弄,板子都能稳稳托住球,利用细微的运动将球引导到指定的位置,这个位置可以是板子正中,也可以通过遥控来随意改变。这或许就可以称作万能的平衡吧。

并联机器人相比于串联机器人起步较晚,目前还有许多悬而未决的问题,这一点也不影响它的机械魅力,以及在实际中的完美应用。只希望各位大牛能快点攻克各类问题,把我们的机械变得更完美。
 
 
 
 
  • 文章来源于 机器人大讲堂
  • 智造家平台提供

418 浏览

为什么人机协作机械手是7个自由度,而不是6个?

机械自动化类 泡泡鱼 2017-03-22 16:42 发表了文章 来自相关话题

现在用的最多的工业机器人,一般都是六轴的,但是最近推出来的人机协作机械臂,却有7个自由度,一直想不明白为什么。直到最近看到知乎上的一个问题:人的手臂(腕关节到肩关节)有几个自由度?才发现,原来7个自由度是对人手臂的真实还原。


人的手臂(腕关节到肩关节)有几个自由度?我想绝大部分人都没有想过,更别说去了解有哪几个自由度,即使是学工科的人,也未必能解释清楚。没想到知乎上居然有人把这个问题回答的这么专业有内涵,同时又那么有哲理,忍不住想要把这个答案分享一下。




回答这个问题的是知乎网友杨硕,答案如下:


实话说,我对robot manipulation还是挺熟的,但是楼上几个答案一眼看去都看不懂。不是黑,而是觉得对非专业人士来说不好理解。


我来尽量用通俗的语言解释一下。


首先,问题的答案是:数一下就行了啊!






7个自由度。



有人问5,6是不是一样的。5是拧钥匙时唯一要转动的关节,动力来自小臂两根桡骨的扭转;6是把鼠标放在桌面用手转时唯一要转动的关节,动力来自手腕的旋转。






至于为什么人手臂是7个自由度,而不是8个也不是6个,可能是因为上帝非常懂机器人控制,下面尽量简单地介绍一下。



首先介绍一个定理:

6个自由度的机械手,在空间中无法在保持末端机构的三维位置不变的情况下从一个构型变换到另一个构型。


这个定理乍一看很不好理解,可以考虑一个更简单的情况:






在这张图上,一个机器人的手臂由基座、两个关节、两根连接件构成(想象把一个圆规打开,然后把一端用手指捏住)。


请问我们能够把机器人在保持上部末端机构在平面上位置不变的情况下,从“lefty”这个状态扭到“righty”这个状态吗?


答案是不行的,不管怎么动两个关节,移动过程中末端机构的位置肯定是要变的。看官也可以拿两根笔在桌子上动一动试试。


同样地,一个6自由度的机械手,即使某两组构型对应的末端机构的三维位置相同,机械手在从一个构型移动到另一个构型的时候无法保持末端机构始终不动。


如果有人在电视里看过工业机器人焊东西的话,就会发现它在同一个位置焊接的时候,一会儿整个扭到这边,一会儿整个扭到那边,看起来非常酷炫的样子。


事实上这么做只是因为,虽然焊接只是想改变末端机构的朝向,而不改变末端机构的位置,但是由于定理的限制,它必须要往后退一些,然后各种扭,才能保证在移动末端机构的朝向的过程中不会撞到东西,因为移动的时候末端机构的三维位置一定会乱动。如果它能够随便转一点点就可以达到目的,还费那个力气酷炫地整体都转起来干啥……


而多了一个自由度以后就不一样了。


想想开门时拧钥匙的动作,这个情况下是人胳膊的末端机构(手)的三维位置没有变(始终在钥匙孔前),但是末端机构(手)的三维旋转变了(转动了钥匙)。人能够实现这个简单的动作,就是因为我们的胳膊有7个自由度。


说到这里,看官可能会看出来了,哎我懂了,我的末端机构有6个自由度(三维位置,三维旋转),而胳膊作为一个机械手,有7个自由度,这两个自由度好像说的不是一回事,但是数量上7-6=1,所以这1个自由度我能拿来拧钥匙。


如果上帝把我们的胳膊设计成6个自由度的话,人拧钥匙的动作一定会非常浮夸。大家可以在拧钥匙的时候不要转手腕,感受一下。


那么为什么不再多给我们一些自由度呢?


因为自由度越多,机械手刚性越差。如果我们的胳膊有8个自由度,那么受伤的概率会更加很多。虽然没有什么生物学研究证明这一点(世界上没有8个自由度的生物躯体),但是机器人的研究是可以证明这个问题的。
 
 
 
 
跟多内容请关注:www.imefuture.com
 
 
来源:AMT 制造业生态圈 查看全部
1.JPG


现在用的最多的工业机器人,一般都是六轴的,但是最近推出来的人机协作机械臂,却有7个自由度,一直想不明白为什么。直到最近看到知乎上的一个问题:人的手臂(腕关节到肩关节)有几个自由度?才发现,原来7个自由度是对人手臂的真实还原。


人的手臂(腕关节到肩关节)有几个自由度?我想绝大部分人都没有想过,更别说去了解有哪几个自由度,即使是学工科的人,也未必能解释清楚。没想到知乎上居然有人把这个问题回答的这么专业有内涵,同时又那么有哲理,忍不住想要把这个答案分享一下。




回答这个问题的是知乎网友杨硕,答案如下:


实话说,我对robot manipulation还是挺熟的,但是楼上几个答案一眼看去都看不懂。不是黑,而是觉得对非专业人士来说不好理解。


我来尽量用通俗的语言解释一下。


首先,问题的答案是:数一下就行了啊!

2.jpg


7个自由度。



有人问5,6是不是一样的。5是拧钥匙时唯一要转动的关节,动力来自小臂两根桡骨的扭转;6是把鼠标放在桌面用手转时唯一要转动的关节,动力来自手腕的旋转。

3.JPG


至于为什么人手臂是7个自由度,而不是8个也不是6个,可能是因为上帝非常懂机器人控制,下面尽量简单地介绍一下。



首先介绍一个定理:

6个自由度的机械手,在空间中无法在保持末端机构的三维位置不变的情况下从一个构型变换到另一个构型。


这个定理乍一看很不好理解,可以考虑一个更简单的情况:

4.JPG


在这张图上,一个机器人的手臂由基座、两个关节、两根连接件构成(想象把一个圆规打开,然后把一端用手指捏住)。


请问我们能够把机器人在保持上部末端机构在平面上位置不变的情况下,从“lefty”这个状态扭到“righty”这个状态吗?


答案是不行的,不管怎么动两个关节,移动过程中末端机构的位置肯定是要变的。看官也可以拿两根笔在桌子上动一动试试。


同样地,一个6自由度的机械手,即使某两组构型对应的末端机构的三维位置相同,机械手在从一个构型移动到另一个构型的时候无法保持末端机构始终不动。


如果有人在电视里看过工业机器人焊东西的话,就会发现它在同一个位置焊接的时候,一会儿整个扭到这边,一会儿整个扭到那边,看起来非常酷炫的样子。


事实上这么做只是因为,虽然焊接只是想改变末端机构的朝向,而不改变末端机构的位置,但是由于定理的限制,它必须要往后退一些,然后各种扭,才能保证在移动末端机构的朝向的过程中不会撞到东西,因为移动的时候末端机构的三维位置一定会乱动。如果它能够随便转一点点就可以达到目的,还费那个力气酷炫地整体都转起来干啥……


而多了一个自由度以后就不一样了。


想想开门时拧钥匙的动作,这个情况下是人胳膊的末端机构(手)的三维位置没有变(始终在钥匙孔前),但是末端机构(手)的三维旋转变了(转动了钥匙)。人能够实现这个简单的动作,就是因为我们的胳膊有7个自由度。


说到这里,看官可能会看出来了,哎我懂了,我的末端机构有6个自由度(三维位置,三维旋转),而胳膊作为一个机械手,有7个自由度,这两个自由度好像说的不是一回事,但是数量上7-6=1,所以这1个自由度我能拿来拧钥匙。


如果上帝把我们的胳膊设计成6个自由度的话,人拧钥匙的动作一定会非常浮夸。大家可以在拧钥匙的时候不要转手腕,感受一下。


那么为什么不再多给我们一些自由度呢?


因为自由度越多,机械手刚性越差。如果我们的胳膊有8个自由度,那么受伤的概率会更加很多。虽然没有什么生物学研究证明这一点(世界上没有8个自由度的生物躯体),但是机器人的研究是可以证明这个问题的。
 
 
 
 
跟多内容请关注:www.imefuture.com
 
 
来源:AMT 制造业生态圈
467 浏览

你真的懂这是几轴吗?还是先从自由度学起吧,一篇文章全搞懂

电气控制类 我是谁 2016-09-18 16:55 发表了文章 来自相关话题

自由度是机器人的一个重要技术指标,它是由机器人的结构决定的,并直接影响到机器人的机动性。对于自由度的概念,机械专业的大牛可能是如数家珍,但对于大多数外行人却是丈二的和尚摸不着头脑,小编不是机械专业,但对自由度也很感兴趣,今天小编斗胆为大家讲一讲机器人的自由度,讲得不对或遗漏的地方,还请各位大牛多多指教。


1 刚体的自由度

自由度指物体能够对坐标系进行独立运动的数目,物体所能进行的运动如下图:






一个物体可以相对于坐标系,进行三个平移和三个旋转运动,即一个简单的物体有六个自由度。
 
 
2 运动副与关节

运动副是两构件直接接触并能产生相对运动的活动联接。运动副引入约束进而限制6个自由度中的某些自由度。在机器人学中,运动副也成为机器人的关节。






上图中列举了一些简单的运动副,按由上及下,由左及右的顺序依次为移动副、转动副、螺旋副、凸轮和球铰。移动副限制了一个方向移动的所有自由度,因而它只剩下一个自由度;转动副限制了一个方向转动以外的所有自由度,它也只剩下一个自由度;最后一个球铰引入3个约束,限制了所有方向的移动,因而只具有x、y和z轴方向的转动,即3个自由度。








3 机器人的自由度

机器人的自由度是指机器人所具有的独立坐标轴运动的数目,但一般不包括手部(末端操作器)的开合自由度。自由度表示了机器人动作灵活的尺度,但也不是自由度越多越好。因为随着自由度的增加,其结构也会变得更加复杂。






上图中,展示了一个简单的机械结构的动作图,关于它的自由度数,我们可以通过下图来计算。因而可以得出,这是一个简单的3自由度的机械臂。







4 机器人自由度的完美诠释

和电路一样,机器人的自由度也有串并联之分,它们之间的区别在哪呢?举一个简单的例子,串联机器人像是我们用一只手拿起一个东西,并联机器人就相当于两个手一起端一个东西。从我们生活经验来看(读者们可以自己端个杯子试试),并联机器人具有刚度大、承载能力强、精度高、末端件惯性小等优点,串联机器人具有结构简单、控制简单、运动空间大等优点。

而关于机器人自由度的完美诠释,我们举两个例子。

串联机器人--7自由度机械臂

一般来讲,由之前我们所讲的刚体的自由度来看,6自由度的机械臂已经足够确定末端物体的位姿,那为什么还要增加一个冗余自由度呢?先看一个有趣的例子。











上图为人的手臂自由度剖析图,除去末端手指的自由自由度,这恰好也是7个自由度。如果我们把上图分解为一个个转动副的关节,便可以得到下面的数学模型






也许这就是上帝在创造人类的鬼斧神工之处,每一种生物体完美的立体结构都可以为我们创造机器人带来灵感。那么为什么上帝多为我们的手臂创造了七个自由度而不是六个呢?关于它的答案有特别学术的解释:改善运动学特性(奇异构型、关节位移超限、工作环境中存在的障碍);改善动力学特性(七轴机器人可以实现关节力矩的再分配,使整个机器人的力矩分配均匀合理);容错性(即使有一个关节失效,还可以继续正常工作)。

但这里我并不想罗列那些普通人看不懂的术语,我们只看一个大家肉眼看得见的优势:






6 自由度机器人







7 自由度机器人

上图中,7自由度机器人可以实现不改变末端位置,只改变机械臂姿态。这对于6自由度机器人来说是无法实现的。

并联机器人--6自由度Stewart平台

Stewart平台,是1965年德国人Stewart发明了的,当时是作为飞行模拟器用于训练飞行员。一个Stewart平台由6个独立控制的伸缩杆组成,两端分别连接着固定基座和可动平台。通过复杂的数学运算,控制各个伸缩连杆的长度和姿态,从而使可动平台实现6个自由度的精确移动。






Stewart平台并联机构已经在航空、航天、海底作业、地下开采、制造装配等行业有着广泛的应用,但小编要给大家看的是下面这个:











上面是一个水平架设的神奇板子,一个金属球,一只手,一个遥控器—不管我们把球扔在板子上哪个角落,怎么摆弄,板子都能稳稳托住球,利用细微的运动将球引导到指定的位置,这个位置可以是板子正中,也可以通过遥控来随意改变。这或许就可以称作万能的平衡吧。

并联机器人相比于串联机器人起步较晚,目前还有许多悬而未决的问题,这一点也不影响它的机械魅力,以及在实际中的完美应用。只希望各位大牛能快点攻克各类问题,把我们的机械变得更完美。
 
 
 
 
文章来源于 机器人大讲堂智造家平台提供 查看全部
自由度是机器人的一个重要技术指标,它是由机器人的结构决定的,并直接影响到机器人的机动性。对于自由度的概念,机械专业的大牛可能是如数家珍,但对于大多数外行人却是丈二的和尚摸不着头脑,小编不是机械专业,但对自由度也很感兴趣,今天小编斗胆为大家讲一讲机器人的自由度,讲得不对或遗漏的地方,还请各位大牛多多指教。


1 刚体的自由度

自由度指物体能够对坐标系进行独立运动的数目,物体所能进行的运动如下图:

1.0_.PNG


一个物体可以相对于坐标系,进行三个平移和三个旋转运动,即一个简单的物体有六个自由度。
 
 
2 运动副与关节

运动副是两构件直接接触并能产生相对运动的活动联接。运动副引入约束进而限制6个自由度中的某些自由度。在机器人学中,运动副也成为机器人的关节。

1.1_.gif


上图中列举了一些简单的运动副,按由上及下,由左及右的顺序依次为移动副、转动副、螺旋副、凸轮和球铰。移动副限制了一个方向移动的所有自由度,因而它只剩下一个自由度;转动副限制了一个方向转动以外的所有自由度,它也只剩下一个自由度;最后一个球铰引入3个约束,限制了所有方向的移动,因而只具有x、y和z轴方向的转动,即3个自由度。

1.2_.gif




3 机器人的自由度

机器人的自由度是指机器人所具有的独立坐标轴运动的数目,但一般不包括手部(末端操作器)的开合自由度。自由度表示了机器人动作灵活的尺度,但也不是自由度越多越好。因为随着自由度的增加,其结构也会变得更加复杂。

11.gif


上图中,展示了一个简单的机械结构的动作图,关于它的自由度数,我们可以通过下图来计算。因而可以得出,这是一个简单的3自由度的机械臂。

11.1_.PNG



4 机器人自由度的完美诠释

和电路一样,机器人的自由度也有串并联之分,它们之间的区别在哪呢?举一个简单的例子,串联机器人像是我们用一只手拿起一个东西,并联机器人就相当于两个手一起端一个东西。从我们生活经验来看(读者们可以自己端个杯子试试),并联机器人具有刚度大、承载能力强、精度高、末端件惯性小等优点,串联机器人具有结构简单、控制简单、运动空间大等优点。

而关于机器人自由度的完美诠释,我们举两个例子。

串联机器人--7自由度机械臂

一般来讲,由之前我们所讲的刚体的自由度来看,6自由度的机械臂已经足够确定末端物体的位姿,那为什么还要增加一个冗余自由度呢?先看一个有趣的例子。

1.51_.PNG


1.52_.PNG


上图为人的手臂自由度剖析图,除去末端手指的自由自由度,这恰好也是7个自由度。如果我们把上图分解为一个个转动副的关节,便可以得到下面的数学模型

1.6_.PNG


也许这就是上帝在创造人类的鬼斧神工之处,每一种生物体完美的立体结构都可以为我们创造机器人带来灵感。那么为什么上帝多为我们的手臂创造了七个自由度而不是六个呢?关于它的答案有特别学术的解释:改善运动学特性(奇异构型、关节位移超限、工作环境中存在的障碍);改善动力学特性(七轴机器人可以实现关节力矩的再分配,使整个机器人的力矩分配均匀合理);容错性(即使有一个关节失效,还可以继续正常工作)。

但这里我并不想罗列那些普通人看不懂的术语,我们只看一个大家肉眼看得见的优势:

11.2_.gif


6 自由度机器人


1.8_.gif


7 自由度机器人

上图中,7自由度机器人可以实现不改变末端位置,只改变机械臂姿态。这对于6自由度机器人来说是无法实现的。

并联机器人--6自由度Stewart平台

Stewart平台,是1965年德国人Stewart发明了的,当时是作为飞行模拟器用于训练飞行员。一个Stewart平台由6个独立控制的伸缩杆组成,两端分别连接着固定基座和可动平台。通过复杂的数学运算,控制各个伸缩连杆的长度和姿态,从而使可动平台实现6个自由度的精确移动。

1.9_.gif


Stewart平台并联机构已经在航空、航天、海底作业、地下开采、制造装配等行业有着广泛的应用,但小编要给大家看的是下面这个:

1.10_.gif


1.11_.gif


上面是一个水平架设的神奇板子,一个金属球,一只手,一个遥控器—不管我们把球扔在板子上哪个角落,怎么摆弄,板子都能稳稳托住球,利用细微的运动将球引导到指定的位置,这个位置可以是板子正中,也可以通过遥控来随意改变。这或许就可以称作万能的平衡吧。

并联机器人相比于串联机器人起步较晚,目前还有许多悬而未决的问题,这一点也不影响它的机械魅力,以及在实际中的完美应用。只希望各位大牛能快点攻克各类问题,把我们的机械变得更完美。
 
 
 
 
  • 文章来源于 机器人大讲堂
  • 智造家平台提供