本月累计签到次数:

今天获取 积分

特斯拉

特斯拉

325 浏览

特斯拉和保时捷汽车电机构造图

机械自动化类 爽歪歪 2017-01-10 16:17 发表了文章 来自相关话题

 今天和大家分享的内容主要针对汽车电机结构图,里面提到了很多关于电机设计的核心图。电机表面上看起来仅由几个基础部件组成,实际上却是一个复杂的机械、电、磁的高耦合复杂系统。而电机产品的制造流程,其难度并不比制造电池简单。     

1. 特斯拉Model S的电机制造
















2. 保时捷918 Spyder的电机











 
来源:网络 查看全部
 今天和大家分享的内容主要针对汽车电机结构图,里面提到了很多关于电机设计的核心图。电机表面上看起来仅由几个基础部件组成,实际上却是一个复杂的机械、电、磁的高耦合复杂系统。而电机产品的制造流程,其难度并不比制造电池简单。     

1. 特斯拉Model S的电机制造

640.webp_(36)_.jpg


640.webp_(37)_.jpg


640.webp_(38)_.jpg


2. 保时捷918 Spyder的电机

640.webp_(39)_.jpg


640.webp_(40)_.jpg


 
来源:网络
357 浏览

特斯拉电池技术高安全性背后的秘密是什么

机械自动化类 Amazing 2016-11-24 10:01 发表了文章 来自相关话题

   特斯拉一直致力于用最具创新力的技术,加速可持续交通的发展。国内有个叫游侠汽车的团队一直在打造纯电动车,他们对这方面很有研究,此前,他们拆解了特斯拉的电池组,我们跟他们一起来看看这背后到底有什么秘密。






拆解特斯拉电池组

我们都知道特斯拉MODEL S的85kW?h版本的电池组由近7000节18650锂电池构成。但电池组的实际情况,却没多少人见过。之前网上发布的电池分析大都是基于特斯拉的电池专利而分析得出的。这次我们就来为大家揭开特斯拉电池的最后一层神秘面纱。

MODEL S一共有16块电池组,最下面的空挡那块原来有两块电池,上图中已经被游侠汽车拆了下来。特斯拉在每一块电池组上都覆盖一块玻纤板对电池进行简单的保护。每两块电池之间都有金属梁隔开。图中左下角是整个电池组的保险丝,右侧是电池的冷却液接口和冷却液加注口。






这块儿就是特斯拉非常高大上锂电池组,在这块板上一共有444节电池,每74节并联成一组,整块电池板由6组电池串联而成。所以我们可以算出在这款特斯拉MODEL S 85车型上一共有7104节18650锂电池。

电池组中间的那几根线一边连接着电池的极板,另一头连到电池控制模块,这些线是用来检测电池组的电压,从而保证电池组正常工作的。再仔细看可以发现,每一节电池上都有一根很细的保险丝,这个是用来保护整个电池组的,当单节电池出现温度过高之类的异常现象时,保险丝会自动熔断,以达到保护整个电池组的目的(每节电池的正负极都会有一根保险丝)。这么多保险丝需要焊接在电路板上是一项非常大的工程,从工艺上来看应该是由专门的机器人使用超声波焊接完成的。






特斯拉BMS主控芯片

特斯拉的电池主控模块,从PCB板上印刷的logo来看,这块电路板是完全由特斯拉自行研发的。电路板上使用了大量的电阻和电容进行信号调理,光是在我们看到的这一面就有6组电信号的采集线路。

由于特斯拉使用的是18650锂电池,这种锂电池就是我们笔记本电脑中使用的电池,所以其电控方面的技术是非常成熟的,虽然我想了很多办法还是无法看清楚主板上芯片的型号,但还是能推测出上面主要有充放电管理芯片和电池计量管理芯片,相比笔记本电池,其复杂的地方应该在多路的电池信号采集和控制算法上,毕竟电动汽车成百上千节电池的监控和笔记本电脑10节左右的电池监控不在一个数量级上。

特斯拉使用的电池是一致性非常高的,他们也出体了一系列的液体冷却方案来保持电池温度的一致性。在安全性与电动车的续航方面,特斯拉一直做得很好,从目前看到设计结构来说特斯拉的防护措施是值得信赖的。






特斯拉的电池热管理系统

我们此前得知特斯拉是有一套专门的液体循环温度管理系统围绕着每一节单体电池的,但其具体构造,却始终未能见到。有媒体在报道中是这么说的“据特斯拉专利说明介绍,隔离板内部的水可以是静态的也可以是流动的,可以直接存储在隔离板内部管腔,也可以被装到特定的水袋中。如果是流动状态,可以与电池组的冷却系统连接在一起,也可以自建循环系统。”






特斯拉的绝缘防护

经过暴力拆解,使我们终于看到了电池组内部的构造,在锂电池组内部,灌注水乙二醇的导热铝管呈S形状环绕,图中左右两侧的接口为水乙二醇液体的循环接口,在铝管外还包裹着一层橘黄色的绝缘胶带。为防止绝缘胶带意外破裂,导致铝管与锂电池外壳接触造成短路,特斯拉在铝管外部还加了一层绝缘胶进行隔离。在其他没有铝管通过的电池之间,也使用了一层绝缘胶进行隔离。






在我第一眼看到特斯拉的电池做这么多层的绝缘隔离时,我还是非常惊讶的。想了一下才明白过来,特斯拉使用的18650锂电池是定制的,不像我们平时看到的锂电池一样有一层绝缘外衣,其裸露在外的电池外壳都是电池负极,一旦外壳被导体连上,就可能造成短路,严重时甚至会发生起火事故,其后果将不堪设想。

原文来源:网络 查看全部
   特斯拉一直致力于用最具创新力的技术,加速可持续交通的发展。国内有个叫游侠汽车的团队一直在打造纯电动车,他们对这方面很有研究,此前,他们拆解了特斯拉的电池组,我们跟他们一起来看看这背后到底有什么秘密。

QQ截图20161124095655.png


拆解特斯拉电池组

我们都知道特斯拉MODEL S的85kW?h版本的电池组由近7000节18650锂电池构成。但电池组的实际情况,却没多少人见过。之前网上发布的电池分析大都是基于特斯拉的电池专利而分析得出的。这次我们就来为大家揭开特斯拉电池的最后一层神秘面纱。

MODEL S一共有16块电池组,最下面的空挡那块原来有两块电池,上图中已经被游侠汽车拆了下来。特斯拉在每一块电池组上都覆盖一块玻纤板对电池进行简单的保护。每两块电池之间都有金属梁隔开。图中左下角是整个电池组的保险丝,右侧是电池的冷却液接口和冷却液加注口。

QQ截图20161124095718.png


这块儿就是特斯拉非常高大上锂电池组,在这块板上一共有444节电池,每74节并联成一组,整块电池板由6组电池串联而成。所以我们可以算出在这款特斯拉MODEL S 85车型上一共有7104节18650锂电池。

电池组中间的那几根线一边连接着电池的极板,另一头连到电池控制模块,这些线是用来检测电池组的电压,从而保证电池组正常工作的。再仔细看可以发现,每一节电池上都有一根很细的保险丝,这个是用来保护整个电池组的,当单节电池出现温度过高之类的异常现象时,保险丝会自动熔断,以达到保护整个电池组的目的(每节电池的正负极都会有一根保险丝)。这么多保险丝需要焊接在电路板上是一项非常大的工程,从工艺上来看应该是由专门的机器人使用超声波焊接完成的。

QQ截图20161124095737.png


特斯拉BMS主控芯片

特斯拉的电池主控模块,从PCB板上印刷的logo来看,这块电路板是完全由特斯拉自行研发的。电路板上使用了大量的电阻和电容进行信号调理,光是在我们看到的这一面就有6组电信号的采集线路。

由于特斯拉使用的是18650锂电池,这种锂电池就是我们笔记本电脑中使用的电池,所以其电控方面的技术是非常成熟的,虽然我想了很多办法还是无法看清楚主板上芯片的型号,但还是能推测出上面主要有充放电管理芯片和电池计量管理芯片,相比笔记本电池,其复杂的地方应该在多路的电池信号采集和控制算法上,毕竟电动汽车成百上千节电池的监控和笔记本电脑10节左右的电池监控不在一个数量级上。

特斯拉使用的电池是一致性非常高的,他们也出体了一系列的液体冷却方案来保持电池温度的一致性。在安全性与电动车的续航方面,特斯拉一直做得很好,从目前看到设计结构来说特斯拉的防护措施是值得信赖的。

QQ截图20161124095752.png


特斯拉的电池热管理系统

我们此前得知特斯拉是有一套专门的液体循环温度管理系统围绕着每一节单体电池的,但其具体构造,却始终未能见到。有媒体在报道中是这么说的“据特斯拉专利说明介绍,隔离板内部的水可以是静态的也可以是流动的,可以直接存储在隔离板内部管腔,也可以被装到特定的水袋中。如果是流动状态,可以与电池组的冷却系统连接在一起,也可以自建循环系统。”

QQ截图20161124095811.png


特斯拉的绝缘防护

经过暴力拆解,使我们终于看到了电池组内部的构造,在锂电池组内部,灌注水乙二醇的导热铝管呈S形状环绕,图中左右两侧的接口为水乙二醇液体的循环接口,在铝管外还包裹着一层橘黄色的绝缘胶带。为防止绝缘胶带意外破裂,导致铝管与锂电池外壳接触造成短路,特斯拉在铝管外部还加了一层绝缘胶进行隔离。在其他没有铝管通过的电池之间,也使用了一层绝缘胶进行隔离。

QQ截图20161124095831.png


在我第一眼看到特斯拉的电池做这么多层的绝缘隔离时,我还是非常惊讶的。想了一下才明白过来,特斯拉使用的18650锂电池是定制的,不像我们平时看到的锂电池一样有一层绝缘外衣,其裸露在外的电池外壳都是电池负极,一旦外壳被导体连上,就可能造成短路,严重时甚至会发生起火事故,其后果将不堪设想。

原文来源:网络
405 浏览

揭秘特斯拉最新电池轻量化技术

机械自动化类 星旭自动化 2016-11-16 20:00 发表了文章 来自相关话题

近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。






不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。






60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。







电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。
 
电池仍占当前电动车成本50%,面对问题包括
1)能量密度提升和成本下降,2)充电速度提升。
 
值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。
 
此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。






特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。






电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。






我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。






政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。






未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。






三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。






隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。






石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。






未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。
 
 
 
来源:1号机器人

智造家提供 查看全部
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

1.jpg


不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

2.jpg


60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。

3.jpg



电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。
 
电池仍占当前电动车成本50%,面对问题包括
1)能量密度提升和成本下降,2)充电速度提升。
 
值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。
 
此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。

4.jpg


特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。

5.jpg


电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。

6.jpg


我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。

7.jpg


政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。

8.jpg


未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。

9.jpg


三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。

10.jpg


隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。

11.jpg


石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。

12.jpg


未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。
 
 
 
来源:1号机器人

智造家提供
285 浏览

探秘特斯拉的神秘工厂,小伙伴们惊呆了

机械自动化类 冲上云霄 2016-11-10 16:11 发表了文章 来自相关话题

特斯拉 (纯电动汽车品牌)
特斯拉汽车公司(Tesla Motors)成立于2003年,总部设在美国加州的硅谷地带。
 
特斯拉致力于用最具创新力的技术,加速可持续交通的发展。特斯拉在技术上为实现可持续能源供应提供了高效方式,减少全球交通对石油类的依赖;通过开放专利以及与其它汽车厂商合作,大力推动了纯电动汽车在全球的发展。 目前正在全力研发全自动无人驾驶汽车。
 
特斯拉汽车公司生产的几大车型包含Tesla Roadster、Tesla Model S、双电机全轮驱动Model S、Tesla Model X。
 





特斯拉的这个号称全球最智能的全自动化生产车间里,从原材料加工到成品的组装,全部生产过程除了少量零部件外,几乎所有生产工作都自给自足。





▲▲冲压生产线、车身中心、烤漆中心与组装中心,这四大制造环节种总共有超过150台机器人参与工作。当然, 在车间中你很少能见到有人的影子。





▲▲组装中心,全部是机器人





▲▲每一个机器人可以完成多种动作
 





▲▲喷漆烤漆车间
 





▲▲组装车间,按装挡风玻璃
 





▲▲组装车间,安装座椅
 






▲▲6秒钟完成一个发动机盖的冲压
 






▲▲一个机器人就能独立搬运车架
 






▲▲整个过程流水线运营,机器人与机器人之间无缝对接
 
全程都是由电脑控制的机器人,根据事先设定好的程序完成!
 
 
 
来源:网络 查看全部
特斯拉 (纯电动汽车品牌)
特斯拉汽车公司(Tesla Motors)成立于2003年,总部设在美国加州的硅谷地带。
 
特斯拉致力于用最具创新力的技术,加速可持续交通的发展。特斯拉在技术上为实现可持续能源供应提供了高效方式,减少全球交通对石油类的依赖;通过开放专利以及与其它汽车厂商合作,大力推动了纯电动汽车在全球的发展。 目前正在全力研发全自动无人驾驶汽车。
 
特斯拉汽车公司生产的几大车型包含Tesla Roadster、Tesla Model S、双电机全轮驱动Model S、Tesla Model X。
 
640.webp_.jpg


特斯拉的这个号称全球最智能的全自动化生产车间里,从原材料加工到成品的组装,全部生产过程除了少量零部件外,几乎所有生产工作都自给自足。

0.gif

▲▲冲压生产线、车身中心、烤漆中心与组装中心,这四大制造环节种总共有超过150台机器人参与工作。当然, 在车间中你很少能见到有人的影子。

0_(1).gif

▲▲组装中心,全部是机器人

0_(2).gif

▲▲每一个机器人可以完成多种动作
 
0_(3).gif


▲▲喷漆烤漆车间
 
0_(4).gif


▲▲组装车间,按装挡风玻璃
 
s640.webp_.jpg


▲▲组装车间,安装座椅
 

s640.webp_(1)_.jpg


▲▲6秒钟完成一个发动机盖的冲压
 

s640.webp_(2)_.jpg


▲▲一个机器人就能独立搬运车架
 

s640.webp_(3)_.jpg


▲▲整个过程流水线运营,机器人与机器人之间无缝对接
 
全程都是由电脑控制的机器人,根据事先设定好的程序完成!
 
 
 
来源:网络
681 浏览

解析:特斯拉如何增加动力电池的电量

机械自动化类 善思惟 2016-10-28 15:18 发表了文章 来自相关话题

近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文,我们来探究下,这个100kWh是如何做到的?






Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。

在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。






众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。
 


原文来源:网络 查看全部
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文,我们来探究下,这个100kWh是如何做到的?

QQ截图20161028111848.png


Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。

在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

QQ截图20161028111903.png


众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。
 


原文来源:网络
浏览

善思惟 发表了文章 来自相关话题

617 浏览

特斯拉的黑科技,不服不行!

机械自动化类 功夫熊猫 2016-09-27 10:21 发表了文章 来自相关话题

自上世纪70年代诞生以来,锂电池成功进入了每个人的生活,但在科技进步如此神速的年代,却没有新的能量存储技术能替代其地位,这足以说明锂电池性能之优越,用途之广泛。随着新能源汽车高速发展,锂电池将得到充分的发展。

提到新能源汽车,就不得不说下马斯克的特斯拉了。时尚的外形、百公里加速3.2秒、续航440公里,这些都是特斯拉Model S作为一款纯电动汽车所展示给人们的数据。







不逊于传统燃油车的性能表现,让特斯拉获得了巨大的成功。同样的锂电池,为何在特斯拉上会有如此不俗的表现?是电动机技术高超?还是电池技术先进?



这不,为了探寻特斯拉电池的奥秘,国外牛人就将一辆Model S的电池板给拆开了,一探究竟。


国外牛人直接给我们展示电池组。电池组安放前后轴之间的底盘位置,其重量可达900公斤。因此造成底盘重心较低,非常利于车辆的高速稳定性。电池组几乎占据车辆底盘的全部,但电池组并没有作为承受力的主体,电池组有加强筋和受力框架保护,大大减低碰撞时的爆炸危险。






电池组整体有标明其身份的铭牌,其中标明了其容量为85kWh,400V直流电,简单来说电池可以装85度电,可供一个普通家庭使用一个月。













电池组表面不仅有塑料膜保护着,而且塑料膜下面还有防火材料的护板。护板下面才是电池组。护板通过螺栓与电池组框架连接,并且连接处充满了密封粘合剂。外观来看电池组保护的不错。














特斯拉Model S电池组板看似非常高大上。其电池组板由16组电池组串联而成,并且每组电池组由444节锂电池,每74节并联形成。因此特斯拉Model S电池组板由7104节18650锂电池组成。















总保险丝位于电池版的前端,并且有外壳保护以防受到撞击。其采用德国Bussmann巴斯曼,额定工作电流为630A,额定电压为690V,分断电流700-200kA,在全球化趋势下该保险丝在印度制造。市场价格在600元左右。












电池板中的16块电池组均衡平铺在壳体上,整体结构紧凑,平铺有利于散热。每一组电池组由六组单体电池包串联而成,但单体电池包的布置并没有采用均衡布置,而是采用不规则的结果,猜测是为了方便电池组内的散热管路布置。

















测量了整个电池板的电压为313.8V,单体电池组电压为196.3V。显然这块电池并没有达到额定的输出电压,可能电池电量并不充足所导致。












电池组内每一节电池都有保险丝链接着,以防单节电池过热危及整体电池过热,并且每节电池保险丝焊接非常精美。电池组中央有线连接到电池控制模块,这些线用来检测电池组的电压,从而保证电池组正常工作。

















电池组整体由透明塑料壳包裹住,两侧有金属散热护板包围。电池厚度比脚掌稍稍厚些,属于扁长型电池组,从而导致车辆重心可大大降低。总体电池组保护的相当不错。

















18650锂电池即普通笔记本电脑的锂电池,众多18650锂电池组成单体电池包,再由电池包组成电池组,并由16组电池组构成电池板。看似简单,但实际需要解决很多连接和散热的问题。












每一组电池组都由一条2/0主线串联起来,主线位于电池板中央,并且有护板覆盖着,较为隐蔽。2/0主线汇集电流后将连接到输出端的接触器。接触器采用泰科电子专门为特斯拉生产的部件。

















电池板中央有一条2/0主线,每组电池组都通过该主线串联输出电流,因此2/0主线尤其重要。特斯拉采用美国Champlain的专门为电动车生产的线缆,其最高可承受600V电压,并且可在-70°-150°之间工作。2/0主线保护的相当不错,不仅有护板保护,而且还有防火材料包裹。这一点可猜测其工作时有可能产生高温。
































电池板内除了电池组外,最多都是“冷却液”管路。每组电池都需要通入一定量的“冷却液”。虽然“冷却液”并没有泵驱动主动流动,但整个电池板所有管路都是相通的,“冷却液”可热胀冷缩进行一定范围流动。






















“冷却液”呈绿色,由50%的水和50%的乙二醇混合而成。“冷却液”配合着铝管使用主要是为了保持电池温度的均衡,防止电池局部温度过高导致电池性能下降。特斯拉的电池热管理系统可将电池组之间的温度控制在±2℃。控制好电池板的温度可延长电池的使用寿命。












电池管理系统(Battery Management System简称BMS)是对电池组进行安全监控及有效管理、提高蓄电池使用效率的装置。对电动车而言,通过该系统对电池组充放电的有效控制,可达到增加续航里程、延长使用寿命、降低运行成本的目的,并保证电池组应用的安全和可靠性。



















电池管理系统主要功能包括数据采集、电池状态计算、能量管理、热管理、安全管理、均衡控制和通信功能等。从电路图上可看到,电池管理系统为特斯拉自行研发,拥有高度的知识产权的核心技术。该系统能自行处理充放电以及发热问题。相信国内厂商较难山寨出来。












这次国外牛人自行拆解特斯拉Model S让我们了解更多细节。18650的数量决定于电池板的总容量;铝管与“冷却液”配合使得电池发热更加均衡;还有电池管理系统BMS复杂的处理使得电池完美充放电。




总得来说,Model S电池保护的相当不错,内部结构设计得恰当好,电池管理系统也相当细致。这些看似不是高端技术的技术,或许正是特斯拉成功的原因吧!
 
 
来源:网络
  查看全部
自上世纪70年代诞生以来,锂电池成功进入了每个人的生活,但在科技进步如此神速的年代,却没有新的能量存储技术能替代其地位,这足以说明锂电池性能之优越,用途之广泛。随着新能源汽车高速发展,锂电池将得到充分的发展。

提到新能源汽车,就不得不说下马斯克的特斯拉了。时尚的外形、百公里加速3.2秒、续航440公里,这些都是特斯拉Model S作为一款纯电动汽车所展示给人们的数据。

11.jpg



不逊于传统燃油车的性能表现,让特斯拉获得了巨大的成功。同样的锂电池,为何在特斯拉上会有如此不俗的表现?是电动机技术高超?还是电池技术先进?



这不,为了探寻特斯拉电池的奥秘,国外牛人就将一辆Model S的电池板给拆开了,一探究竟。


国外牛人直接给我们展示电池组。电池组安放前后轴之间的底盘位置,其重量可达900公斤。因此造成底盘重心较低,非常利于车辆的高速稳定性。电池组几乎占据车辆底盘的全部,但电池组并没有作为承受力的主体,电池组有加强筋和受力框架保护,大大减低碰撞时的爆炸危险。

640.webp_(3)_.jpg


电池组整体有标明其身份的铭牌,其中标明了其容量为85kWh,400V直流电,简单来说电池可以装85度电,可供一个普通家庭使用一个月。

640.webp_(4)_.jpg


640.webp_(5)_.jpg




电池组表面不仅有塑料膜保护着,而且塑料膜下面还有防火材料的护板。护板下面才是电池组。护板通过螺栓与电池组框架连接,并且连接处充满了密封粘合剂。外观来看电池组保护的不错。

640.webp_(6)_.jpg










特斯拉Model S电池组板看似非常高大上。其电池组板由16组电池组串联而成,并且每组电池组由444节锂电池,每74节并联形成。因此特斯拉Model S电池组板由7104节18650锂电池组成。
640.webp_(7)_.jpg


640.webp_.jpg







总保险丝位于电池版的前端,并且有外壳保护以防受到撞击。其采用德国Bussmann巴斯曼,额定工作电流为630A,额定电压为690V,分断电流700-200kA,在全球化趋势下该保险丝在印度制造。市场价格在600元左右。

640.webp_(8)_.jpg








电池板中的16块电池组均衡平铺在壳体上,整体结构紧凑,平铺有利于散热。每一组电池组由六组单体电池包串联而成,但单体电池包的布置并没有采用均衡布置,而是采用不规则的结果,猜测是为了方便电池组内的散热管路布置。


640.webp_(27)_.jpg


640.webp_(28)_.jpg







测量了整个电池板的电压为313.8V,单体电池组电压为196.3V。显然这块电池并没有达到额定的输出电压,可能电池电量并不充足所导致。



640.webp_(29)_.jpg






电池组内每一节电池都有保险丝链接着,以防单节电池过热危及整体电池过热,并且每节电池保险丝焊接非常精美。电池组中央有线连接到电池控制模块,这些线用来检测电池组的电压,从而保证电池组正常工作。



640.webp_(30)_.jpg


640.webp_(1)_.jpg






电池组整体由透明塑料壳包裹住,两侧有金属散热护板包围。电池厚度比脚掌稍稍厚些,属于扁长型电池组,从而导致车辆重心可大大降低。总体电池组保护的相当不错。


640.webp_(31)_.jpg


QQ截图20160927093541.png







18650锂电池即普通笔记本电脑的锂电池,众多18650锂电池组成单体电池包,再由电池包组成电池组,并由16组电池组构成电池板。看似简单,但实际需要解决很多连接和散热的问题。


640.webp_(32)_.jpg







每一组电池组都由一条2/0主线串联起来,主线位于电池板中央,并且有护板覆盖着,较为隐蔽。2/0主线汇集电流后将连接到输出端的接触器。接触器采用泰科电子专门为特斯拉生产的部件。

640.webp_(34)_.jpg


640.webp_(35)_.jpg








电池板中央有一条2/0主线,每组电池组都通过该主线串联输出电流,因此2/0主线尤其重要。特斯拉采用美国Champlain的专门为电动车生产的线缆,其最高可承受600V电压,并且可在-70°-150°之间工作。2/0主线保护的相当不错,不仅有护板保护,而且还有防火材料包裹。这一点可猜测其工作时有可能产生高温。

640.webp_(35)_.jpg


640.webp_(36)_.jpg


640.webp_(37)_.jpg


640.webp_(38)_.jpg


640.webp_(39)_.jpg








电池板内除了电池组外,最多都是“冷却液”管路。每组电池都需要通入一定量的“冷却液”。虽然“冷却液”并没有泵驱动主动流动,但整个电池板所有管路都是相通的,“冷却液”可热胀冷缩进行一定范围流动。


640.webp_(40)_.jpg


640.webp_(41)_.jpg


640.webp_(42)_.jpg







“冷却液”呈绿色,由50%的水和50%的乙二醇混合而成。“冷却液”配合着铝管使用主要是为了保持电池温度的均衡,防止电池局部温度过高导致电池性能下降。特斯拉的电池热管理系统可将电池组之间的温度控制在±2℃。控制好电池板的温度可延长电池的使用寿命。

640.webp_(43)_.jpg








电池管理系统(Battery Management System简称BMS)是对电池组进行安全监控及有效管理、提高蓄电池使用效率的装置。对电动车而言,通过该系统对电池组充放电的有效控制,可达到增加续航里程、延长使用寿命、降低运行成本的目的,并保证电池组应用的安全和可靠性。


640.webp_(44)_.jpg


640.webp_(45)_.jpg









电池管理系统主要功能包括数据采集、电池状态计算、能量管理、热管理、安全管理、均衡控制和通信功能等。从电路图上可看到,电池管理系统为特斯拉自行研发,拥有高度的知识产权的核心技术。该系统能自行处理充放电以及发热问题。相信国内厂商较难山寨出来。


640.webp_(46)_.jpg







这次国外牛人自行拆解特斯拉Model S让我们了解更多细节。18650的数量决定于电池板的总容量;铝管与“冷却液”配合使得电池发热更加均衡;还有电池管理系统BMS复杂的处理使得电池完美充放电。




总得来说,Model S电池保护的相当不错,内部结构设计得恰当好,电池管理系统也相当细致。这些看似不是高端技术的技术,或许正是特斯拉成功的原因吧!
 
 
来源:网络
 
624 浏览

干货:揭秘特斯拉最新电池轻量化技术!

机械自动化类 砸金蛋 2016-09-21 13:53 发表了文章 来自相关话题

近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。

电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。电池仍占当前电动车成本50%,面对问题包括:1)能量密度提升和成本下降,2)充电速度提升。值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。

特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。

电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。

我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。

政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。

未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。

三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。

隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。

石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。

未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。

无人驾驶:智能汽车的终极方向

无人驾驶来袭,科技型公司、初创型公司与传统整车厂、一级供应商争抢高地。目前,获得美国加州无人驾驶汽车路试资格的公司包括:1)科技型公司,如谷歌、特斯拉、Cruise Automation(已被通用收购)、Zoox、Drive.ai、FaradayFuture等;2)传统整车厂与一级供应商,如大众、奔驰、日产、宝马、本田、福特、博世、德尔福等。

科技型公司往往直指高自动化无人驾驶,零包袱+数据优势造就高速发展。科技型公司剑指高级自动驾驶,主要由于:1)科技型公司作为行业新进入者,并无历史“包袱”,可以直接实现跨越式发展;2)科技型公司在数据融合、高精度地图方面具有技术优势;3)通过实现无人驾驶可以真正地将汽车变成下一个“互联网入口”。

特斯拉无人驾驶方案转变:从单目到双目、三目。以Mobileye为代表的单目视觉依赖机器学习的结果,如果前方出现未经学习的物体形状(如卡车的侧面),则该识别功能很可能失效。双目摄像头采用类似人眼的两个相机形成立体图像,从而进行物体定位,有可能最早出现在ModelX车型中。三目摄像头则是在原来单目摄像头的基础上增加了一个远距离窄视角的摄像头,用于长距离目标追踪和交通标志及地面障碍物的提前标识;以及一个近距离宽视角的摄像头,用于探测车辆周围。

国内科技型公司参与造车和智能驾驶。包括百度、阿里、腾讯、乐视、蔚来、车和家、威马等。

传统汽车厂商采用逐步提升的方案,从ADAS逐渐过渡到无人驾驶。预计2020年前后传统汽车厂商将迎来高级自动驾驶产业化高潮。

国内自主品牌发力智能驾驶。长安无人驾驶汽车成功从重庆开往北京参展,已经实现高速路况下自动化驾驶(3级)。7月,上汽和阿里发布首款量产互联网汽车荣威RX5。国内自主品牌车企已经具备智能驾驶技术储,预计最快于2017年实现3级智能驾驶汽车量产。

3、ADAS零组件:感知、决策、执行

汽车智能涉及多种元器件,包括感应识别、执行机构、芯片算法、地图导航、车联网等模块。ADAS的主要功能模块主要包括:感知、决策、执行等。其中,执行模块的难度较大,电控制动执行技术主要被博世、大陆等公司掌握。芯片、激光雷达、毫米波雷达等感知元器件通常由外资公司把控。中资公司在感知决策算法领域有一定积累。V2V和V2X未来可能成为汽车智能感知的组成部分。

感应识别模块:多传感器融合发展

感应识别硬件:以雷达和摄像头为主,多传感器融合发展。目前主流的车载传感器包括超声波雷达、激光雷达、毫米波雷达、摄像头、红外探头等。基于测量能力和环境适应性,预计雷达和摄像头会成为传感器主流,呈现多传感器融合趋势。

毫米波雷达:性价比优秀的测距传感器

毫米波雷达是性价比优秀的传感器,优势在于探距精度高,缺陷在于覆盖角度较小。目前主要应用分硬件和软件两个领域,未来毫米波雷达硬件主要集中在24G和77G两个频段,软件算法等可能逐渐芯片化。

全球汽车毫米波雷达主要供应商为传统汽车电子优势企业。如博世、大陆、海拉等。

毫米波雷达存在国产化预期。国内厂商试图突破核心技术,但目前相对成熟的产品仅有湖南纳雷和厦门意行的24GHz中短距雷达,77GHz雷达刚刚起步。

激光雷达:成本下降是趋势,有望进一步普及

激光雷达可以扫描生成3D高精度地图,是智能驾驶领域中常用的感知元件。激光雷达发射激光束来探测目标的位置、速度等特征量。车载激光雷达采用多个激光发射器和接收器,建立三维点云图,从而达到实时环境感知的目的。

目前,有旋转部件的激光雷达技术相对成熟,国外主流生产厂家为Velodyne和Ibeo。Velodyne采用激光发射、接收一起旋转的方式,产品涵盖16/32/64线等,未来可能拓展128线;Ibeo采用固定激光光源,通过内部玻璃片旋转的方式改变激光光束方向,实现多角度检测,产品涵盖4/8线等,欧百拓为Ibeo的国内合作方。

激光雷达固态化是未来趋势,具有小型化、低成本的优势。创业公司Quanergy与德尔福合作开发出了固态激光雷达,采取相控阵技术,内部不存在旋转部件。传统优势企业Velodyne和Ibeo也推出了混合固态激光雷达,外观上看不到旋转部件,但内部仍靠机械旋转实现激光扫描。我们预计至2020年,固态激光雷达成本或可降至250美元;至2025年,成本可继续降低至100美元;届时激光雷达成本将与普通毫米波雷达相当。

国内有数家公司参与激光雷达的研发与生产,应用领域包括大气污染检测、三维测绘、汽车等。但目前罕有能够应用于智能驾驶场景的高精度激光雷达。

摄像头:龙头地位稳固,有望快速发展

摄像头是常用的ADAS感知识别元件。海外龙头如Mobileye等公司采用基于摄像头的图像识别感知。目前摄像头的应用主要有:1)单目摄像头;2)后视摄像头;3)立体摄像头;4)环视摄像头。

镜头模组:国内镜头行业龙头地位稳固,有望快速发展。光学镜头目前广泛用于手机、车载、相机等领域,由于手机等数码产品增长放缓,镜头产业转移到车载趋势明显。国内行业龙头优势地位明显,如舜宇光学车载后视镜头出货量目前居全球第一位,全球市场占有率达30%左右,已进入各大车企(BMW、Benz、Audi等)前装市场。我们预计未来车载镜头业务提升有望推动国内行业龙头业绩快速增长。

红外夜视:成长空间大,关注国内龙头

红外夜视主要适用于夜间无路灯黑暗路段。中国道路基础设施较好,车载红外夜视的使用场景相对有限。当前红外夜视成本依然偏高,主要用于中高端车型。

执行机构:电控化是趋势,电控制动难度最高

执行机构电控化是智能驾驶的必要条件。我们认为,未来汽车的三大主要执行系统(驱动、制动、转向)都将采用电控化方案,因为:1)电控系统更方便整合智能驾驶技术;2)新能源汽车为电控系统提供了天然的优势平台;3)电控系统可以在同一辆车上实现多种不同的驾驶风格;4)电控化方案可以大幅降低系统复杂度助力汽车轻量化;5)电控化系统直接控制电机,效率更高,响应更快,驾驶更加安全。

驱动系统:由集中式到分布式

驱动系统将由集中式向分布式发展。现有的驱动系统,无论传统燃油汽车,还是电动汽车,都只有一个动力源(发动机/驱动电机),称为集中式驱动。分布式系统即车辆有多个动力源,由多个电机分别驱动不同的车轮。

分布式驱动系统可分为两种:轮边驱动和轮毂驱动。轮边电机,是指每个车轮单独配备一个驱动电机,电机与车轮是分离的,根据电机特性,电机与车轮中间可能配备有齿轮减速机构。轮毂电机,是指电机的外转子即车轮轮毂,可直接在电机外转子上安装轮胎。相比而言,轮边电机更容易实现,而轮毂电机集成度更高。

从发展路径上看,轮边驱动率先实现商业化,轮毂驱动是终极发展目标。制约轮毂电机商业化的问题主要包括:1)成本高;2)高温环境严苛,电机易退磁;3)工作环境恶劣,易进水、多泥沙、多振动,严重影响轮毂电机的寿命;4)一致性要求高;5)舒适性差。但是,相比于轮边电机,轮毂电机集成度更高、无需齿轮传动装置、对安装空间要求小、更适合制动能量回收,是分布式驱动的终极发展目标。

转向系统:线控转向是未来方向

线控转向依靠电信号控制,是未来发展方向。线控转向即取消方向盘与转向机之间的机械连接,代替以传输线和电控单元ECU。相比于传统机械转向系统,线控转向有明显优势:1)节省布置空间,减轻系统重量,有助于汽车轻量化;2)碰撞工况下更加安全,由于取消了转向管柱,正面碰撞情况下的驾驶员安全性提升;3)适应智能汽车,可变速比,转向响应更加智能安全;方便整合车道保持LKA、主动转向、自动泊车等ADAS功能。

可靠性是制约线控转向商业化的主要瓶颈。2013年上市的英菲尼迪Q50是目前唯一的线控转向量产车(保留机械备份),但已两次因转向系统问题被召回。目前提高可靠性的技术方案主要有:1)保留机械备份,即保留原有的转向管柱等连接机构;2)余度管理技术,即采用多套电控系统,互相监控、互为备份,此技术目前尚在实验室研究阶段。

制动系统:EHB/EMB两大路径

电子辅助制动已广泛应用于传统汽车。消费者熟知的辅助制动系统包括:ABS(Antilock Brake System,制动防抱死系统)、ESP(Electronic Stability Program车身电子稳定系统)等。

传统汽车液压制动系统依赖真空助力器,难以满足电动汽车需求;电控制动成为未来趋势。传统汽车的液压制动系统包括:制动踏板,真空助力器,液压系统,制动盘或制动鼓。其中真空助力器将驾驶员较小的踩踏力放大为较大的制动力,因而是核心部件;其真空环境一般取自发动机的进气歧管,因而难以满足电动汽车的需求。取代方案包括:1)电子真空泵;2)电控制动。我们认为,电子真空泵只是暂时的权宜之计,电控制动将是未来发展趋势。

电控制动技术包括EHB和EMB两种方案。电控制动是指依靠电信号传递制动信息,替代液压制动系统。电控制动系统包括电控液压制动EHB和电控机械制动EMB。

电控液压制动EHB技术较为成熟,已应用于量产汽车。EHB系统在制动踏板与液压系统之间仍保留机械连接,利用电机助力推动主缸。EHB的研发始于上世纪九十年代,目前已有比较成熟的产品,如博世ibooster;并已成功应用于量产汽车,如奔驰(SL级,E级)。

电控机械制动EMB是重点研究方向,安全性制约商业化进程。EMB系统无需真空助力器和液压系统,直接依靠电机驱动制动执行机构。具有EMB技术储备的零部件厂商包括布雷博、瀚德等;整车方面尚停留在概念车阶段。EMB系统还存在一系列问题,因而近期难以商业化:1)电机难以满足要求;2)制动高温环境恶劣,电机面临退磁风险;3)汽车的操纵性和舒适性较差;4)安全隐患,电子故障可能导致制动失灵。

芯片:智能决策核心硬件

芯片按照所处功能层划分大致可分为处于感应层的传感器芯片,处于决策层的主控芯片和处于执行层的功率半导体芯片等。其中,传感器芯片和主控芯片是构成智能驾驶的两大基本技术。

主控芯片:着眼传统芯片,展望智能驾驶专用芯片

传统汽车芯片:市场竞争充分,份额较为分散。传统汽车芯片即MCU(Micro Controller Unit),又称单片机。传统汽车芯片参与者众多,包括瑞萨、英飞凌、意法半导体、飞思卡尔、恩智浦等。

智能化程度的提高需要人工智能深度学习的介入。智能驾驶面临的环境是高度复杂的,很难用有限的规则来定义清楚,传统算法的表现往往无法满足要求,而深度学习的优势则非常明显。

深度学习多层模型带来数据量爆炸式增长,传统CPU已经不能满足计算要求。神经网络层数的增加直接导致了运算量的急速增长,传统的CPU架构已经不能满足深度学习计算要求。

显示芯片与传感器芯片:助力ADAS系统主动安全技术发展

传感器芯片一体化有望成为车辆周边识别技术的发展趋势。伴随人们对驾驶安全的需求不断增大,多传感器融合的技术路线将被看好,未来有望实现摄像头、激光雷达、毫米波雷达等多传感器在单一芯片上的融合集成。

Mobileye发布新一代视觉SoC芯片积极进军传感器融合市场。今年5月Mobileye联合意法半导体发布针对自动驾驶的新一代视觉系统芯片——EyeQ5。EyeQ5将装备8枚多线程CPU内核,同时还会搭载18枚Mobileye的下一代视觉处理器,最多支持20个外部传感器(摄像头、雷达或激光雷达),主要定位于L3或L4自动驾驶阶段的应用。

GPU(图形处理器)众核同步并行运算,适于智能汽车深度学习。GPU包括数以千计的更小、更高效的核心(最多的英伟达K80有5700个核),因此常被称为“众核”;GPU只有非常简单的控制逻辑并省去了Cache,适合把同样的指令流并行发送到众核上,进行海量数据的快速处理。事实证明,在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。

GPU王者NVIDIA:搭建自动驾驶汽车专用计算机。目前国际GPU市场被NVIDIA和AMD两大公司瓜分。截至2015年第二季度,NVIDIA市场份额已达到82%。谷歌无人驾驶汽车所采用的技术部件中,就采用了NVIDIA的移动终端处理器Tegra(4核CPU+256核GPU)。NVIDIA还专为智能汽车设计了两大平台:自动驾驶汽车平台DRIVEPX,数字座舱计算机DRIVE CX。

硬件加速:FPGA(可编程门阵列)利用硬件运算,具有显著速度优势。FPGA内部包含大量重复的IOB(输入输出模块)、CLB(可配置逻辑块,内部是基本的逻辑门电路,与门、或门等)和布线信道等基本单元。FPGA的输入到输出之间并没有计算过程,只是通过烧录好的硬件电路完成信号的传输,因此运行速度非常高,可达CPU的40倍。而正是因为FPGA的这种工作模式,决定了需要预先布置大量门阵列以满足用户的设计需求,因此有“以面积换速度”的说法:使用大量的门电路阵列,消耗更多的FPGA内核资源,用来提升整个系统的运行速度。

FPGA国际市场:四大厂商垄断。目前在全球市场中,Xilinx、Altera两大公司对FPGA的技术与市场占据绝对垄断地位,两家公司占有将近90%市场份额,专利达6000余项之多。剩余市场份额主要被Lattice和Microsemi所占有,这两家的专利也达3000多项。2014年Xilinx、Altera两大公司营业收入分别为23.8亿美元和19.3亿美元;而Lattice和Microsemi(仅FPGA部分)收入分别为3.66亿美元和2.75亿美元。

专用加速:ASIC(专用集成电路)是针对专门应用而设计的集成电路。ASIC是针对特定工作负载时速度最快且执行效率最高的处理方案。与通用集成电路相比,ASIC具有体积更小、功耗更低、性能提高、保密性增强、成本低等优点。

谷歌专用定制化芯片TPU:服务于AlphaGo等人工智能技术。今年5月的I/O大会上,谷歌披露了其以ASIC为基础的定制化芯片TPU(TensorProcessing Unit,张量处理器),并明确表示这款芯片不会对外销售。TPU为谷歌人工智能做出了许多贡献:1)机器学习人工智能系统RankBrain,用来帮助谷歌处理搜索结果;2)街景Street View,用来提高地图与导航的准确性;3)围棋人工智能AlphaGo,其最初版本使用了48CPU+8GPU,随后的分布式版本使用了1202CPU+176GPU(即对战樊麾时的配置),几个月后硬件平台再次升级至TPU(即对战李世乭时的配置)。

寒武纪推出我国首款定制化神经网络处理器。寒武纪科技面向深度学习等人工智能关键技术进行专用芯片的研发,可用于云服务器和智能终端上的图像识别、语音识别、人脸识别等应用。

半导体芯片:执行端不可取代

以独立体系工作,占据芯片市场一席之地。半导体芯片功率半导体主要由集成电路和分立功率器件两部分组成。IGBT(InsulatedGate Bipolar Transistor)是纯电动车的核心模块,同时充电桩的建设也运用了大量的功率器件模块。据华虹宏力披露情况,到2020年我国年产新能源汽车预计达200万台,仅8寸的IGBT的芯片26万片之多。此外,据Yole Developpement 预计,2016-2022年SiC功率半导体市场规模的年均复合增速将达到38%。
 
 
来源:网络 查看全部
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。

电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。电池仍占当前电动车成本50%,面对问题包括:1)能量密度提升和成本下降,2)充电速度提升。值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。

特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。

电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。

我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。

政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。

未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。

三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。

隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。

石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。

未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。

无人驾驶:智能汽车的终极方向

无人驾驶来袭,科技型公司、初创型公司与传统整车厂、一级供应商争抢高地。目前,获得美国加州无人驾驶汽车路试资格的公司包括:1)科技型公司,如谷歌、特斯拉、Cruise Automation(已被通用收购)、Zoox、Drive.ai、FaradayFuture等;2)传统整车厂与一级供应商,如大众、奔驰、日产、宝马、本田、福特、博世、德尔福等。

科技型公司往往直指高自动化无人驾驶,零包袱+数据优势造就高速发展。科技型公司剑指高级自动驾驶,主要由于:1)科技型公司作为行业新进入者,并无历史“包袱”,可以直接实现跨越式发展;2)科技型公司在数据融合、高精度地图方面具有技术优势;3)通过实现无人驾驶可以真正地将汽车变成下一个“互联网入口”。

特斯拉无人驾驶方案转变:从单目到双目、三目。以Mobileye为代表的单目视觉依赖机器学习的结果,如果前方出现未经学习的物体形状(如卡车的侧面),则该识别功能很可能失效。双目摄像头采用类似人眼的两个相机形成立体图像,从而进行物体定位,有可能最早出现在ModelX车型中。三目摄像头则是在原来单目摄像头的基础上增加了一个远距离窄视角的摄像头,用于长距离目标追踪和交通标志及地面障碍物的提前标识;以及一个近距离宽视角的摄像头,用于探测车辆周围。

国内科技型公司参与造车和智能驾驶。包括百度、阿里、腾讯、乐视、蔚来、车和家、威马等。

传统汽车厂商采用逐步提升的方案,从ADAS逐渐过渡到无人驾驶。预计2020年前后传统汽车厂商将迎来高级自动驾驶产业化高潮。

国内自主品牌发力智能驾驶。长安无人驾驶汽车成功从重庆开往北京参展,已经实现高速路况下自动化驾驶(3级)。7月,上汽和阿里发布首款量产互联网汽车荣威RX5。国内自主品牌车企已经具备智能驾驶技术储,预计最快于2017年实现3级智能驾驶汽车量产。

3、ADAS零组件:感知、决策、执行

汽车智能涉及多种元器件,包括感应识别、执行机构、芯片算法、地图导航、车联网等模块。ADAS的主要功能模块主要包括:感知、决策、执行等。其中,执行模块的难度较大,电控制动执行技术主要被博世、大陆等公司掌握。芯片、激光雷达、毫米波雷达等感知元器件通常由外资公司把控。中资公司在感知决策算法领域有一定积累。V2V和V2X未来可能成为汽车智能感知的组成部分。

感应识别模块:多传感器融合发展

感应识别硬件:以雷达和摄像头为主,多传感器融合发展。目前主流的车载传感器包括超声波雷达、激光雷达、毫米波雷达、摄像头、红外探头等。基于测量能力和环境适应性,预计雷达和摄像头会成为传感器主流,呈现多传感器融合趋势。

毫米波雷达:性价比优秀的测距传感器

毫米波雷达是性价比优秀的传感器,优势在于探距精度高,缺陷在于覆盖角度较小。目前主要应用分硬件和软件两个领域,未来毫米波雷达硬件主要集中在24G和77G两个频段,软件算法等可能逐渐芯片化。

全球汽车毫米波雷达主要供应商为传统汽车电子优势企业。如博世、大陆、海拉等。

毫米波雷达存在国产化预期。国内厂商试图突破核心技术,但目前相对成熟的产品仅有湖南纳雷和厦门意行的24GHz中短距雷达,77GHz雷达刚刚起步。

激光雷达:成本下降是趋势,有望进一步普及

激光雷达可以扫描生成3D高精度地图,是智能驾驶领域中常用的感知元件。激光雷达发射激光束来探测目标的位置、速度等特征量。车载激光雷达采用多个激光发射器和接收器,建立三维点云图,从而达到实时环境感知的目的。

目前,有旋转部件的激光雷达技术相对成熟,国外主流生产厂家为Velodyne和Ibeo。Velodyne采用激光发射、接收一起旋转的方式,产品涵盖16/32/64线等,未来可能拓展128线;Ibeo采用固定激光光源,通过内部玻璃片旋转的方式改变激光光束方向,实现多角度检测,产品涵盖4/8线等,欧百拓为Ibeo的国内合作方。

激光雷达固态化是未来趋势,具有小型化、低成本的优势。创业公司Quanergy与德尔福合作开发出了固态激光雷达,采取相控阵技术,内部不存在旋转部件。传统优势企业Velodyne和Ibeo也推出了混合固态激光雷达,外观上看不到旋转部件,但内部仍靠机械旋转实现激光扫描。我们预计至2020年,固态激光雷达成本或可降至250美元;至2025年,成本可继续降低至100美元;届时激光雷达成本将与普通毫米波雷达相当。

国内有数家公司参与激光雷达的研发与生产,应用领域包括大气污染检测、三维测绘、汽车等。但目前罕有能够应用于智能驾驶场景的高精度激光雷达。

摄像头:龙头地位稳固,有望快速发展

摄像头是常用的ADAS感知识别元件。海外龙头如Mobileye等公司采用基于摄像头的图像识别感知。目前摄像头的应用主要有:1)单目摄像头;2)后视摄像头;3)立体摄像头;4)环视摄像头。

镜头模组:国内镜头行业龙头地位稳固,有望快速发展。光学镜头目前广泛用于手机、车载、相机等领域,由于手机等数码产品增长放缓,镜头产业转移到车载趋势明显。国内行业龙头优势地位明显,如舜宇光学车载后视镜头出货量目前居全球第一位,全球市场占有率达30%左右,已进入各大车企(BMW、Benz、Audi等)前装市场。我们预计未来车载镜头业务提升有望推动国内行业龙头业绩快速增长。

红外夜视:成长空间大,关注国内龙头

红外夜视主要适用于夜间无路灯黑暗路段。中国道路基础设施较好,车载红外夜视的使用场景相对有限。当前红外夜视成本依然偏高,主要用于中高端车型。

执行机构:电控化是趋势,电控制动难度最高

执行机构电控化是智能驾驶的必要条件。我们认为,未来汽车的三大主要执行系统(驱动、制动、转向)都将采用电控化方案,因为:1)电控系统更方便整合智能驾驶技术;2)新能源汽车为电控系统提供了天然的优势平台;3)电控系统可以在同一辆车上实现多种不同的驾驶风格;4)电控化方案可以大幅降低系统复杂度助力汽车轻量化;5)电控化系统直接控制电机,效率更高,响应更快,驾驶更加安全。

驱动系统:由集中式到分布式

驱动系统将由集中式向分布式发展。现有的驱动系统,无论传统燃油汽车,还是电动汽车,都只有一个动力源(发动机/驱动电机),称为集中式驱动。分布式系统即车辆有多个动力源,由多个电机分别驱动不同的车轮。

分布式驱动系统可分为两种:轮边驱动和轮毂驱动。轮边电机,是指每个车轮单独配备一个驱动电机,电机与车轮是分离的,根据电机特性,电机与车轮中间可能配备有齿轮减速机构。轮毂电机,是指电机的外转子即车轮轮毂,可直接在电机外转子上安装轮胎。相比而言,轮边电机更容易实现,而轮毂电机集成度更高。

从发展路径上看,轮边驱动率先实现商业化,轮毂驱动是终极发展目标。制约轮毂电机商业化的问题主要包括:1)成本高;2)高温环境严苛,电机易退磁;3)工作环境恶劣,易进水、多泥沙、多振动,严重影响轮毂电机的寿命;4)一致性要求高;5)舒适性差。但是,相比于轮边电机,轮毂电机集成度更高、无需齿轮传动装置、对安装空间要求小、更适合制动能量回收,是分布式驱动的终极发展目标。

转向系统:线控转向是未来方向

线控转向依靠电信号控制,是未来发展方向。线控转向即取消方向盘与转向机之间的机械连接,代替以传输线和电控单元ECU。相比于传统机械转向系统,线控转向有明显优势:1)节省布置空间,减轻系统重量,有助于汽车轻量化;2)碰撞工况下更加安全,由于取消了转向管柱,正面碰撞情况下的驾驶员安全性提升;3)适应智能汽车,可变速比,转向响应更加智能安全;方便整合车道保持LKA、主动转向、自动泊车等ADAS功能。

可靠性是制约线控转向商业化的主要瓶颈。2013年上市的英菲尼迪Q50是目前唯一的线控转向量产车(保留机械备份),但已两次因转向系统问题被召回。目前提高可靠性的技术方案主要有:1)保留机械备份,即保留原有的转向管柱等连接机构;2)余度管理技术,即采用多套电控系统,互相监控、互为备份,此技术目前尚在实验室研究阶段。

制动系统:EHB/EMB两大路径

电子辅助制动已广泛应用于传统汽车。消费者熟知的辅助制动系统包括:ABS(Antilock Brake System,制动防抱死系统)、ESP(Electronic Stability Program车身电子稳定系统)等。

传统汽车液压制动系统依赖真空助力器,难以满足电动汽车需求;电控制动成为未来趋势。传统汽车的液压制动系统包括:制动踏板,真空助力器,液压系统,制动盘或制动鼓。其中真空助力器将驾驶员较小的踩踏力放大为较大的制动力,因而是核心部件;其真空环境一般取自发动机的进气歧管,因而难以满足电动汽车的需求。取代方案包括:1)电子真空泵;2)电控制动。我们认为,电子真空泵只是暂时的权宜之计,电控制动将是未来发展趋势。

电控制动技术包括EHB和EMB两种方案。电控制动是指依靠电信号传递制动信息,替代液压制动系统。电控制动系统包括电控液压制动EHB和电控机械制动EMB。

电控液压制动EHB技术较为成熟,已应用于量产汽车。EHB系统在制动踏板与液压系统之间仍保留机械连接,利用电机助力推动主缸。EHB的研发始于上世纪九十年代,目前已有比较成熟的产品,如博世ibooster;并已成功应用于量产汽车,如奔驰(SL级,E级)。

电控机械制动EMB是重点研究方向,安全性制约商业化进程。EMB系统无需真空助力器和液压系统,直接依靠电机驱动制动执行机构。具有EMB技术储备的零部件厂商包括布雷博、瀚德等;整车方面尚停留在概念车阶段。EMB系统还存在一系列问题,因而近期难以商业化:1)电机难以满足要求;2)制动高温环境恶劣,电机面临退磁风险;3)汽车的操纵性和舒适性较差;4)安全隐患,电子故障可能导致制动失灵。

芯片:智能决策核心硬件

芯片按照所处功能层划分大致可分为处于感应层的传感器芯片,处于决策层的主控芯片和处于执行层的功率半导体芯片等。其中,传感器芯片和主控芯片是构成智能驾驶的两大基本技术。

主控芯片:着眼传统芯片,展望智能驾驶专用芯片

传统汽车芯片:市场竞争充分,份额较为分散。传统汽车芯片即MCU(Micro Controller Unit),又称单片机。传统汽车芯片参与者众多,包括瑞萨、英飞凌、意法半导体、飞思卡尔、恩智浦等。

智能化程度的提高需要人工智能深度学习的介入。智能驾驶面临的环境是高度复杂的,很难用有限的规则来定义清楚,传统算法的表现往往无法满足要求,而深度学习的优势则非常明显。

深度学习多层模型带来数据量爆炸式增长,传统CPU已经不能满足计算要求。神经网络层数的增加直接导致了运算量的急速增长,传统的CPU架构已经不能满足深度学习计算要求。

显示芯片与传感器芯片:助力ADAS系统主动安全技术发展

传感器芯片一体化有望成为车辆周边识别技术的发展趋势。伴随人们对驾驶安全的需求不断增大,多传感器融合的技术路线将被看好,未来有望实现摄像头、激光雷达、毫米波雷达等多传感器在单一芯片上的融合集成。

Mobileye发布新一代视觉SoC芯片积极进军传感器融合市场。今年5月Mobileye联合意法半导体发布针对自动驾驶的新一代视觉系统芯片——EyeQ5。EyeQ5将装备8枚多线程CPU内核,同时还会搭载18枚Mobileye的下一代视觉处理器,最多支持20个外部传感器(摄像头、雷达或激光雷达),主要定位于L3或L4自动驾驶阶段的应用。

GPU(图形处理器)众核同步并行运算,适于智能汽车深度学习。GPU包括数以千计的更小、更高效的核心(最多的英伟达K80有5700个核),因此常被称为“众核”;GPU只有非常简单的控制逻辑并省去了Cache,适合把同样的指令流并行发送到众核上,进行海量数据的快速处理。事实证明,在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。

GPU王者NVIDIA:搭建自动驾驶汽车专用计算机。目前国际GPU市场被NVIDIA和AMD两大公司瓜分。截至2015年第二季度,NVIDIA市场份额已达到82%。谷歌无人驾驶汽车所采用的技术部件中,就采用了NVIDIA的移动终端处理器Tegra(4核CPU+256核GPU)。NVIDIA还专为智能汽车设计了两大平台:自动驾驶汽车平台DRIVEPX,数字座舱计算机DRIVE CX。

硬件加速:FPGA(可编程门阵列)利用硬件运算,具有显著速度优势。FPGA内部包含大量重复的IOB(输入输出模块)、CLB(可配置逻辑块,内部是基本的逻辑门电路,与门、或门等)和布线信道等基本单元。FPGA的输入到输出之间并没有计算过程,只是通过烧录好的硬件电路完成信号的传输,因此运行速度非常高,可达CPU的40倍。而正是因为FPGA的这种工作模式,决定了需要预先布置大量门阵列以满足用户的设计需求,因此有“以面积换速度”的说法:使用大量的门电路阵列,消耗更多的FPGA内核资源,用来提升整个系统的运行速度。

FPGA国际市场:四大厂商垄断。目前在全球市场中,Xilinx、Altera两大公司对FPGA的技术与市场占据绝对垄断地位,两家公司占有将近90%市场份额,专利达6000余项之多。剩余市场份额主要被Lattice和Microsemi所占有,这两家的专利也达3000多项。2014年Xilinx、Altera两大公司营业收入分别为23.8亿美元和19.3亿美元;而Lattice和Microsemi(仅FPGA部分)收入分别为3.66亿美元和2.75亿美元。

专用加速:ASIC(专用集成电路)是针对专门应用而设计的集成电路。ASIC是针对特定工作负载时速度最快且执行效率最高的处理方案。与通用集成电路相比,ASIC具有体积更小、功耗更低、性能提高、保密性增强、成本低等优点。

谷歌专用定制化芯片TPU:服务于AlphaGo等人工智能技术。今年5月的I/O大会上,谷歌披露了其以ASIC为基础的定制化芯片TPU(TensorProcessing Unit,张量处理器),并明确表示这款芯片不会对外销售。TPU为谷歌人工智能做出了许多贡献:1)机器学习人工智能系统RankBrain,用来帮助谷歌处理搜索结果;2)街景Street View,用来提高地图与导航的准确性;3)围棋人工智能AlphaGo,其最初版本使用了48CPU+8GPU,随后的分布式版本使用了1202CPU+176GPU(即对战樊麾时的配置),几个月后硬件平台再次升级至TPU(即对战李世乭时的配置)。

寒武纪推出我国首款定制化神经网络处理器。寒武纪科技面向深度学习等人工智能关键技术进行专用芯片的研发,可用于云服务器和智能终端上的图像识别、语音识别、人脸识别等应用。

半导体芯片:执行端不可取代

以独立体系工作,占据芯片市场一席之地。半导体芯片功率半导体主要由集成电路和分立功率器件两部分组成。IGBT(InsulatedGate Bipolar Transistor)是纯电动车的核心模块,同时充电桩的建设也运用了大量的功率器件模块。据华虹宏力披露情况,到2020年我国年产新能源汽车预计达200万台,仅8寸的IGBT的芯片26万片之多。此外,据Yole Developpement 预计,2016-2022年SiC功率半导体市场规模的年均复合增速将达到38%。
 
 
来源:网络
351 浏览

几百亿砸不出个特斯拉,为何新能源汽车被补贴成扶不起的阿斗?

机械自动化类 泰迪的礼物 2016-09-01 08:36 发表了文章 来自相关话题

[摘要] 近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。国家花了大笔的补贴,结果不是消费者买到了称心如意的新能源汽车,而是车商造出来一堆品质低劣,性能差劲的“新能源汽车”,然后在标上动辄20多万的极高价格销售。

在汽车销量榜上,这些车都卖出去了,但是在路上却非常少见。真正被牌照限制,不得不买新能源汽车的消费者,环顾所有可选产品,竟然没有几个型号能达到燃油车的平均的水平。

另外一方面,高额补贴下是频频的骗补传闻,企业如同打了鸡血一样纷纷成立新公司,制造出五花八门的车型,骗取新能源补贴。国家对新能源补贴是花了大钱的,几百亿砸下去,特斯拉都应该砸出来几个了,但是种下的是龙种,收获的是跳蚤。这是为什么呢?

一、秘密在于细节

现在,媒体倾向于把板子打到骗补企业和个人身上,说是这些人的主观原因。但是,资本永远是逐利的,只要风险(被法办)的机率小,骗补贴的利益大,就一定有资本会参与骗补。

真正的问题是补贴政策制订的本身就有重大问题。现行的政策不是鼓励发展新能源汽车,而是在鼓励骗补、真正做有市场的车反而被压制。补贴政策制订的时候完全不考虑市场,不考虑技术,违反客观规律。

把板子打到造烂车,骗补贴的企业身上只对了一半,另外一半要打在订政策的部门上面。按照补贴政策,恰恰是造烂车才能利益最大化。

为什么呢?秘密就在细节里面。

2015年的新能源补贴政策,大客车按照米数补贴,车长补贴多,车长10米就国家补贴50万,如果地方补贴一比一配比就是100万。问题是车长几米和新能源补贴有什么关系?造壳子长不看里程,不看电机就补贴,用20万成本造一个车,拿100万补贴完全可以。所以,就有了大客车骗补的疯狂,很多企业买燃油车车壳,自己加上电池包电机就去骗100万补贴了。

2016年,制订政策的部门意识到2015年规定荒谬,规定了按照形势里程拿补贴,超过250公里给5.5万国家补贴,地方补贴配比是11万。但是里程是个可以做手脚的东西。2吨的车,跑250公里纯电,大约需要50度电池,一度电池2000块,电池成本就10万,你给11万补贴说的过去。

800公斤的小车,跑250公里纯电,25度电池,甚至20度电池就够了。电池成本4万,你也给11万补贴。

厂商会怎么做?做2吨的车,总成本30万,补贴11万,还有19万,加上利润,税费,渠道卖25万才行,25万,你买国产电动车吗?做800公斤的小车,加上电池成本8万,补贴已经超过成本了,但是定价就不能订便宜了,也要定25万,先拿到11万补贴再说。车白送都赚了。去了补贴13万没人买怎么办?自己成立公司自己买。左手倒右手。然后,拆了(电池)送回去继续生产,循环利用,再拿12万补贴。

真正造新能源汽车的,反而不能从新能源政策中收益多少,25万的车没人买啊! 造假骗补的,反而最贴合政策,你让企业怎么干?

补贴按照里程,车本身的成本越低,定价越高越赚钱,车企做烂车,关联公司买反而是利益最大化的方案。在这种政策引导之下,就是政府花了几百亿,引导企业做了一大堆离开补贴一辆卖不出去的烂车。把宝贵的资源浪费掉了。

二、正确的补贴政策应该顺应市场

新能源有很好的机会,现在技术方面已经没有瓶颈、发展对了方向,十年扶持一两个世界领先水平的企业是可以的(规模是特斯拉的几十倍)。但是要认清需求和市场。

新能源的真实市场其实分三块:

第一块纯电动只在公交和出租有前途,里程足够长,油电池差价才能解决电池成本问题。公交和出租还有有政府提供的集中充电,公交和出租系统集中,电池还容易的做到梯次利用。解决电池处置不当的污染问题。

第二块主流家用只有插电混合动力有前途。一是以后插电和燃油差价会越来越小,最后成本差几万相当于高配的价格。二是插电在纯电动下可以做出燃油无法相比的优势,噪音,震动,加速能力,动力的线性等等。10万买福克斯级别的舒适,15万买凯美瑞级别的舒适,福克斯rs级别的加速,市内摩托车级别的费用,这才是插电的方向。

第三块是低速电动车,这块应该订低于汽车的专用标准,允许部分道路行驶。3万块,一公里几分钱,在县城自己院子充电,或者车位安装个插座。县城可以跑好几圈。这是典型使用场景。高速,省道,大城市不允许进去。政策应该围绕这三块来补。

三、如何才能补出中国的特斯拉?

汽车是个产业链很长,很成熟的产业。汽车的质量与供应链的水平关系很大。优质汽车是10000多个优质配件组合而成。要设计一辆出色的车,砸钱就可以办到。要小规模手工造几十辆超越特斯拉ModelS的车,几十亿投资的互联网企业也可能做到。要造几万辆,几十万辆量产的比特斯拉ModelS更好更便宜的车就没有那么简单了。

你必须买到和特斯拉同样优质,甚至更好的配件,同时还需要用更低的价格买到。而又好又便宜采购的前提是量。

特斯拉年销量几万辆。如果一家新公司采购几十万辆,那么供应链就会给你比特斯拉更好的配件,更便宜的价格。你甚至可以自己收购或者成立一个配件厂,自己做高品质低价格的配件。有10000多这种配件,有优秀的设计和完备的测试,有一流的人才,比特斯拉更好更便宜的车就造出来了。

而最难的是怎么上一年几十万的量? 中国的补贴和政府政策执行力恰恰可以解决量的问题。

出租车,公车,国企单位,事业单位……,中国政府控制的汽车年采购量是要超过百万的。通过政策、牌照、补贴,中国完全可以人为制造出几个年销量几十万的巨头。全国采购政府控制车辆,像美国采购战斗机一样,全国就订两三个平台。

一个平台要求纯电动,插电混动模块化自由组合,轿车,SUV,MPV共平台。就是说,百万级别的采购量,大部分配件都是可以通用的。有A平台的纯电出租车,有A平台的插电家用轿车,都市SUV,公务用MPV。只要是A平台的就有大量通用采购的零件,以最大的量保证采购的配件优质低价。

全国让所有车厂拿方案,通过测试对比,优选三五个平台,通过实践检验最终只留两三家。谁有本事30万做出雷克萨斯的可靠性,迈巴赫的舒适,兰博基尼的加速,订单每个月3万台,就每台给它15万补贴,把它扶持成一流企业。而30万的价格随着量的不断增大,研发成本的平摊,会降低到25万,20万,最终没有补贴也具有强大的市场竞争力。

这样,企业在优胜劣汰中进步,最终形成两三个互相激烈竞争的超级巨头。把中国制造的新能源汽车推到超越特斯拉的高度。中国的特斯拉自然也就补出来了。

韩国其实就走类似强制合并的道路,用了几十年发展出了现代汽车。中国人口是韩国的几十倍,中国的体制和十多亿的市场规模其实很容易搞出来几个世界级的汽车巨头。

而一切要先从调整政策开始。
 
来源:网络 查看全部
[摘要] 近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。国家花了大笔的补贴,结果不是消费者买到了称心如意的新能源汽车,而是车商造出来一堆品质低劣,性能差劲的“新能源汽车”,然后在标上动辄20多万的极高价格销售。

在汽车销量榜上,这些车都卖出去了,但是在路上却非常少见。真正被牌照限制,不得不买新能源汽车的消费者,环顾所有可选产品,竟然没有几个型号能达到燃油车的平均的水平。

另外一方面,高额补贴下是频频的骗补传闻,企业如同打了鸡血一样纷纷成立新公司,制造出五花八门的车型,骗取新能源补贴。国家对新能源补贴是花了大钱的,几百亿砸下去,特斯拉都应该砸出来几个了,但是种下的是龙种,收获的是跳蚤。这是为什么呢?

一、秘密在于细节

现在,媒体倾向于把板子打到骗补企业和个人身上,说是这些人的主观原因。但是,资本永远是逐利的,只要风险(被法办)的机率小,骗补贴的利益大,就一定有资本会参与骗补。

真正的问题是补贴政策制订的本身就有重大问题。现行的政策不是鼓励发展新能源汽车,而是在鼓励骗补、真正做有市场的车反而被压制。补贴政策制订的时候完全不考虑市场,不考虑技术,违反客观规律。

把板子打到造烂车,骗补贴的企业身上只对了一半,另外一半要打在订政策的部门上面。按照补贴政策,恰恰是造烂车才能利益最大化。

为什么呢?秘密就在细节里面。

2015年的新能源补贴政策,大客车按照米数补贴,车长补贴多,车长10米就国家补贴50万,如果地方补贴一比一配比就是100万。问题是车长几米和新能源补贴有什么关系?造壳子长不看里程,不看电机就补贴,用20万成本造一个车,拿100万补贴完全可以。所以,就有了大客车骗补的疯狂,很多企业买燃油车车壳,自己加上电池包电机就去骗100万补贴了。

2016年,制订政策的部门意识到2015年规定荒谬,规定了按照形势里程拿补贴,超过250公里给5.5万国家补贴,地方补贴配比是11万。但是里程是个可以做手脚的东西。2吨的车,跑250公里纯电,大约需要50度电池,一度电池2000块,电池成本就10万,你给11万补贴说的过去。

800公斤的小车,跑250公里纯电,25度电池,甚至20度电池就够了。电池成本4万,你也给11万补贴。

厂商会怎么做?做2吨的车,总成本30万,补贴11万,还有19万,加上利润,税费,渠道卖25万才行,25万,你买国产电动车吗?做800公斤的小车,加上电池成本8万,补贴已经超过成本了,但是定价就不能订便宜了,也要定25万,先拿到11万补贴再说。车白送都赚了。去了补贴13万没人买怎么办?自己成立公司自己买。左手倒右手。然后,拆了(电池)送回去继续生产,循环利用,再拿12万补贴。

真正造新能源汽车的,反而不能从新能源政策中收益多少,25万的车没人买啊! 造假骗补的,反而最贴合政策,你让企业怎么干?

补贴按照里程,车本身的成本越低,定价越高越赚钱,车企做烂车,关联公司买反而是利益最大化的方案。在这种政策引导之下,就是政府花了几百亿,引导企业做了一大堆离开补贴一辆卖不出去的烂车。把宝贵的资源浪费掉了。

二、正确的补贴政策应该顺应市场

新能源有很好的机会,现在技术方面已经没有瓶颈、发展对了方向,十年扶持一两个世界领先水平的企业是可以的(规模是特斯拉的几十倍)。但是要认清需求和市场。

新能源的真实市场其实分三块:

第一块纯电动只在公交和出租有前途,里程足够长,油电池差价才能解决电池成本问题。公交和出租还有有政府提供的集中充电,公交和出租系统集中,电池还容易的做到梯次利用。解决电池处置不当的污染问题。

第二块主流家用只有插电混合动力有前途。一是以后插电和燃油差价会越来越小,最后成本差几万相当于高配的价格。二是插电在纯电动下可以做出燃油无法相比的优势,噪音,震动,加速能力,动力的线性等等。10万买福克斯级别的舒适,15万买凯美瑞级别的舒适,福克斯rs级别的加速,市内摩托车级别的费用,这才是插电的方向。

第三块是低速电动车,这块应该订低于汽车的专用标准,允许部分道路行驶。3万块,一公里几分钱,在县城自己院子充电,或者车位安装个插座。县城可以跑好几圈。这是典型使用场景。高速,省道,大城市不允许进去。政策应该围绕这三块来补。

三、如何才能补出中国的特斯拉?

汽车是个产业链很长,很成熟的产业。汽车的质量与供应链的水平关系很大。优质汽车是10000多个优质配件组合而成。要设计一辆出色的车,砸钱就可以办到。要小规模手工造几十辆超越特斯拉ModelS的车,几十亿投资的互联网企业也可能做到。要造几万辆,几十万辆量产的比特斯拉ModelS更好更便宜的车就没有那么简单了。

你必须买到和特斯拉同样优质,甚至更好的配件,同时还需要用更低的价格买到。而又好又便宜采购的前提是量。

特斯拉年销量几万辆。如果一家新公司采购几十万辆,那么供应链就会给你比特斯拉更好的配件,更便宜的价格。你甚至可以自己收购或者成立一个配件厂,自己做高品质低价格的配件。有10000多这种配件,有优秀的设计和完备的测试,有一流的人才,比特斯拉更好更便宜的车就造出来了。

而最难的是怎么上一年几十万的量? 中国的补贴和政府政策执行力恰恰可以解决量的问题。

出租车,公车,国企单位,事业单位……,中国政府控制的汽车年采购量是要超过百万的。通过政策、牌照、补贴,中国完全可以人为制造出几个年销量几十万的巨头。全国采购政府控制车辆,像美国采购战斗机一样,全国就订两三个平台。

一个平台要求纯电动,插电混动模块化自由组合,轿车,SUV,MPV共平台。就是说,百万级别的采购量,大部分配件都是可以通用的。有A平台的纯电出租车,有A平台的插电家用轿车,都市SUV,公务用MPV。只要是A平台的就有大量通用采购的零件,以最大的量保证采购的配件优质低价。

全国让所有车厂拿方案,通过测试对比,优选三五个平台,通过实践检验最终只留两三家。谁有本事30万做出雷克萨斯的可靠性,迈巴赫的舒适,兰博基尼的加速,订单每个月3万台,就每台给它15万补贴,把它扶持成一流企业。而30万的价格随着量的不断增大,研发成本的平摊,会降低到25万,20万,最终没有补贴也具有强大的市场竞争力。

这样,企业在优胜劣汰中进步,最终形成两三个互相激烈竞争的超级巨头。把中国制造的新能源汽车推到超越特斯拉的高度。中国的特斯拉自然也就补出来了。

韩国其实就走类似强制合并的道路,用了几十年发展出了现代汽车。中国人口是韩国的几十倍,中国的体制和十多亿的市场规模其实很容易搞出来几个世界级的汽车巨头。

而一切要先从调整政策开始。
 
来源:网络
1297 浏览

一个特斯拉还不够,如何抓住未来汽车变革的机会

设计类 唐古拉 2016-07-19 15:58 发表了文章 来自相关话题

[摘要] 让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。科技企业迫不及待地加入这场革命。是谁驱动行业变革?如果你将特斯拉和福特T型车上市之后的销量进行对比,会发现惊人的巧合。不单单是增长曲线,1910-1912年的福特T型车和2013-2015年的特斯拉,销量数据几乎是一致的。




来自官方公开数据

这两款车都属于当时市场上的创新产品,这几年正是它们从萌芽步入小规模商业化的阶段。而它们能不能驱动行业变革,取决于它们是否能够顺利度过大规模商业化阶段。众所周知,福特T型车做到了。1916年,福特T型车达到50万产量,福特的流水线革命带来了整个汽车工业的变革。福特T型车后来被评选为20世纪的「世纪之车」。





同样的,特斯拉计划2020年要达到50万产量,这个产量扩张计划和福特 T 型车保持了周期上的一致,却被不少人质疑。特斯拉的发展并没有想象中那么顺利,产能危机,人才流失,超级工厂延期,自动驾驶死亡事故,特斯拉的新闻热点一直没有断过。

对特斯拉抱有信心的人,相信它具备破坏式创新的颠覆条件。被称作「破坏式创新之父」的克莱顿·克里斯坦森曾经说过,成熟企业一般都具备破坏式创新产品的开发能力,但由于这样的产品不满足已有价值网络的客户需求,成熟企业不会选择大量跟进,这给了新兴企业机会。而新兴企业一旦成为技术变革的领先者,行业的颠覆就不可避免的开始了。

光一个特斯拉是不够的





让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。

2009年3月,特拉维斯·卡兰尼克(Travis Kalanick) 和 格瑞特·坎普(Garrett Camp)在美国创立Uber,在持续的努力下,推动全球走入共享出行时代。同样是2009年,Google开始研发无人驾驶汽车,至今行驶里程超过150万英里。

特斯拉,Uber和Google,这三个力量结合在一起,推动了产品和需求的跨越式发展,整个行业进入了新的变革点。如果说燃料的替代还是出于节能减排的需求,技术门槛的降低有利于新生代厂商的加入,那智能化、共享化则为新能源注入更具想象力的未来。

汽车的意义改变了,不再是传统意义的私家轿车,越来越多的私家车加入共享的行业。当0到100+公里的多样化出行需求都能被满足时,公与私的边界将被彻底打破。科技企业迫不及待地加入这场革命。

我们可以确认的是,未来汽车的发展会从此处延展。

可能有三分之一的车成为电动车





彭博社预测2040年电动汽车份额将达到35%。高盛预测10年内电动汽车将会获得22%的市场份额,每年电动汽车销售量将是2500万辆左右。在大众集团公布的2025年规划里,电动车的销量计划将在200万辆至300万辆之间,占总销量的20%-25%。

用一个汽车厂商高管的话来说,电动汽车不是趋势,而是现实了。如果说机构预测你还有所怀疑的话,厂家的预测是最具有参考价值的,因为汽车厂商至少需要提前四五年进行产品规划,现在的销量计划对未来五年的产量分配有主要影响。

这样的决心,跟特斯拉的示范效应有关。汽车厂商认识到电动汽车的性能开始赶超汽油车,而电动汽车的续航里程也开始满足人的一些出行需求。电动车的增长会比以往都更加迅速。电动汽车努力了一百多年,终于等到了走入一线的机会。

由于电动汽车的维护成本较低,电动汽车会先从B端开始渗透,慢慢影响到C端消费者。滴滴出行总裁柳青在中国互联网大会上表示,五年内滴滴平台注册电动车要达到100万辆。如果你经常在上海打车,就会发现打到比亚迪秦或者唐的概率非常高,这些车辆并非私人用车,而是公司统一采购。像EVCARD这样的分时租赁公司,都选择了电动汽车作为服务车辆。





电池成本下降是电动车普及的重要前提。特斯拉的计划是以内华达超级电池工厂为起点,通过供应链优化和规模效应降低电池成本,超级工厂的顺利投产将成为电池成本下降的一个重要转折点。目前,电动车的发展与各国政策密切相关,政府依靠大量补贴鼓励民众购买电动汽车,直接推动了电动车的销量。

电动汽车的发展,既关系到能源问题和基础设施的建设问题,也关系到国内若干年来一直期待的汽车行业弯道超车的实现。

汽车厂商面临出行服务的转型





共享出行带来的未来图景是,不必买车就可以拥有更加自由的出行方式。

2015年,中国汽车保有量达到1.72亿,城市越来越堵,停车位越来越难找,司机们也越来越烦躁。随着共享出行的普及和新一代消费观念的升级,下一代年轻人很可能选择不购买车辆,不再单纯地「占有」车辆,而是和车辆成为一种「使用」关系。当多样化的交通需求被满足的时候,就是汽车销量逐渐下滑的时候。

一旦销量下滑,汽车制造环节的利润将受到影响。因此汽车厂商在积极考虑从制造业向服务业转型,挖掘新的利润增长点。宝马提出了以交通出行为核心的「第一战略」,强调服务业将成为宝马的支柱产业,并提供个人出行的解决方案。宝马旗下还专门设立了一个叫做BMW i Ventures的投资基金,在出行领域的投资非常活跃。





BMW i Ventures 的投资项目

除此之外,每个厂商在共享出行领域的投资活动都非常积极,并且早有计划。

戴姆勒早在2009年推出Car2Go汽车共享服务,并于2012年收购打车应用MyTaxi;通用以5亿美金投资Lyft并创立分享品牌Maven;德国三大厂商戴姆勒、宝马和奥迪以25亿欧元收购地图供应商HERE;福特更是将「汽车+智能移动出行公司」直接打在了自己的宣传海报上。





据统计,汽车是我们生活中利用率最低的物品之一。在环保的关注之余,我们也关注产品的效率提升,包括从能源的转化效率(电能)到汽车的使用率。闲置社会资源的再利用,也就是共享经济的流行,根本上解决的还是资源浪费的问题。社会组织未来的发展一定是更节能,同时更有效率的。

当一辆汽车共享为更多的成员服务时,这辆汽车的设计标准会更加大众化,车型配置变得更加简单,并满足多人出行需求。而像驾驶乐趣这些更加私人的需求,会同步发展,为更加精准小众的客户群体服务。

核心数据指标开始关注汽车行驶里程数

随着我们对交通出行的关注度提高,里程这一重要指标,也将纳入车辆评价的标准。当车和家的创始人李想谈公司的发展方向时,不再是谈定位于什么人群的多少价位的车辆,而是谈30公里使用什么样的车辆,100公里使用什么样的车辆。

汽车行业的下个阶段重点,将从对汽车销量的关注转移到对车辆行驶里程数的关注。车辆行驶里程数将成为未来个性化数据的基础,并通过云端进行存储。

车险的商业模式也可能随之改变,比如UBI车险(Usage-Based Insurance)就是基于车辆行驶里程和车主驾驶行为的数据,制定个性化保费标准。对经营性质的公司来说,里程数的云端获取会更有利于运营数据的计算。另外,里程数的透明化,也将使二手车的车况标准化更加容易。

交通使用的变化,也会引起政策的变化。政府可以基于里程使用情况(路面使用率)设置税费标准,来优化路面交通拥堵。

汽车进入新平台时期





随着汽车燃料的变化,使用的零部件减少,车辆的空间布置将发生改变,车子的外形设计可以有更丰富的想象空间,同时,车身轻量化设计也比以往更加引起重视。另外,车联网服务的升级,自动驾驶(高级辅助驾驶)功能的引入,都预示着汽车将进入新的平台时期。

这里的平台,包括两个方面的内容,一个是产品的新平台,一个是服务的新平台。

宝马i品牌的 “LifeDrive” 结构能帮你简单理解新电动车的平台。Life和Drive是两个不同的模块,Drive 模块承载了电池电机结构,是电动车的核心部件,也承担车辆配重比的重要功能。Life模块则可以更加个性化,有更丰富自由的空间,同时,在自动驾驶技术的发展下,Life模块还需要解决摄像头、雷达和传感器的布置方案。




厂家介入共享出行领域的影响在于,共享出行统计的数据能给车辆设计带来重要参考。车辆的工具属性、身份属性和兴趣属性会慢慢剥离,车辆使用方面的相关数据,比如出行距离、行李空间、出行人数、行驶速度和行驶里程等,会不断沉淀,厂家在产品规划时可以更好地贴近消费者的日常需求。

目前,产品开发流程是由整车厂商主导,由供应商协同配合,产品生产下线后,通过经销商进行销售、售后、金融和二手车服务。汽车产品销售的复杂性决定了它需要合作伙伴的加入,只是合作伙伴的名义和合作方式可能会有所不同,这一点在短期内很难有太大的突破。

车辆智能化,从车联网和自动驾驶开始

一个容易让人理解的智能场景是,你开车前往一个商场,即将到达前,车辆为你推荐商场的餐厅信息并自动为你排号,当你到达时,车辆选择好停车场并自动停车熄火。当你用餐结束时,在手机上召唤汽车,车辆自动驶出,空调温度和座椅位置根据你的个人偏好已调节完毕。

这里面涉及到多种功能,地图导航,语音技术,生活(餐饮)信息的数据化,封闭停车场内的自动驾驶等。车辆的智能化,是需要不同信息的数据化和各种软件服务的提升才能够实现的。

但是,有一个疑问,我们是否需要车辆变得更加智能,或者说,车辆的智能是否真的给我们的日常生活提供便利呢?这会不会只是一种可有可无的功能?





在Google无人驾驶的宣传片里,邀请了一些上了年纪的老人家来体验Google无人驾驶车辆。每个乘坐Google无人驾驶车辆的老人最后都露出了开心的笑容。看完宣传片可以明白,无人驾驶车辆可以为更多不便于开车的老人、残疾人提供更加便利的出行需求。这是在赛车场上自由感受车辆加速性能的年轻人们所想不到的。

一个来自Uber的数据显示,Uber的单位成本是每英里2.8美元,其中80%成本来自司机。如果实现自动驾驶最高等级L4之后,成本可以降至0.53美元。也就是说自动驾驶可以降低公司的运营成本,同时,使一批司机失业。另外,自动驾驶使共享出行更加便利、成本更低,并且提高载客率。

新加坡、卢森堡、阿姆斯特丹近期主动提议,以2-4年为目标,推行完全自动驾驶应需出行服务。由MIT分离出的初创企业NuTonomy计划在新加坡的工业园one-north试点完全自动驾驶的出租车服务。而令广告从业者们感到兴奋的是,无需司机的自动驾驶时代,释放出更多的车内时间,媒体内容和广告有了新的想象空间。

在特斯拉的自动驾驶事故之后,行业对自动驾驶的推行变得更加谨慎,这是一件好事。我能想象到的更远的未来应该是,每个不同的人都有自己的生存空间,每个人的出行权力能够得到尊重,每个人都能自由地享受出行的乐趣。

汽车未来的变革虽然还没那么快到来,但已经来临了。
 
来源:网络 查看全部
[摘要] 让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。科技企业迫不及待地加入这场革命。是谁驱动行业变革?如果你将特斯拉和福特T型车上市之后的销量进行对比,会发现惊人的巧合。不单单是增长曲线,1910-1912年的福特T型车和2013-2015年的特斯拉,销量数据几乎是一致的。
QQ截图20160719154815.jpg

来自官方公开数据

这两款车都属于当时市场上的创新产品,这几年正是它们从萌芽步入小规模商业化的阶段。而它们能不能驱动行业变革,取决于它们是否能够顺利度过大规模商业化阶段。众所周知,福特T型车做到了。1916年,福特T型车达到50万产量,福特的流水线革命带来了整个汽车工业的变革。福特T型车后来被评选为20世纪的「世纪之车」。

QQ图片20160719154833.png

同样的,特斯拉计划2020年要达到50万产量,这个产量扩张计划和福特 T 型车保持了周期上的一致,却被不少人质疑。特斯拉的发展并没有想象中那么顺利,产能危机,人才流失,超级工厂延期,自动驾驶死亡事故,特斯拉的新闻热点一直没有断过。

对特斯拉抱有信心的人,相信它具备破坏式创新的颠覆条件。被称作「破坏式创新之父」的克莱顿·克里斯坦森曾经说过,成熟企业一般都具备破坏式创新产品的开发能力,但由于这样的产品不满足已有价值网络的客户需求,成熟企业不会选择大量跟进,这给了新兴企业机会。而新兴企业一旦成为技术变革的领先者,行业的颠覆就不可避免的开始了。

光一个特斯拉是不够的

QQ图片20160719154848.png

让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。

2009年3月,特拉维斯·卡兰尼克(Travis Kalanick) 和 格瑞特·坎普(Garrett Camp)在美国创立Uber,在持续的努力下,推动全球走入共享出行时代。同样是2009年,Google开始研发无人驾驶汽车,至今行驶里程超过150万英里。

特斯拉,Uber和Google,这三个力量结合在一起,推动了产品和需求的跨越式发展,整个行业进入了新的变革点。如果说燃料的替代还是出于节能减排的需求,技术门槛的降低有利于新生代厂商的加入,那智能化、共享化则为新能源注入更具想象力的未来。

汽车的意义改变了,不再是传统意义的私家轿车,越来越多的私家车加入共享的行业。当0到100+公里的多样化出行需求都能被满足时,公与私的边界将被彻底打破。科技企业迫不及待地加入这场革命。

我们可以确认的是,未来汽车的发展会从此处延展。

可能有三分之一的车成为电动车

QQ截图20160719154946.jpg

彭博社预测2040年电动汽车份额将达到35%。高盛预测10年内电动汽车将会获得22%的市场份额,每年电动汽车销售量将是2500万辆左右。在大众集团公布的2025年规划里,电动车的销量计划将在200万辆至300万辆之间,占总销量的20%-25%。

用一个汽车厂商高管的话来说,电动汽车不是趋势,而是现实了。如果说机构预测你还有所怀疑的话,厂家的预测是最具有参考价值的,因为汽车厂商至少需要提前四五年进行产品规划,现在的销量计划对未来五年的产量分配有主要影响。

这样的决心,跟特斯拉的示范效应有关。汽车厂商认识到电动汽车的性能开始赶超汽油车,而电动汽车的续航里程也开始满足人的一些出行需求。电动车的增长会比以往都更加迅速。电动汽车努力了一百多年,终于等到了走入一线的机会。

由于电动汽车的维护成本较低,电动汽车会先从B端开始渗透,慢慢影响到C端消费者。滴滴出行总裁柳青在中国互联网大会上表示,五年内滴滴平台注册电动车要达到100万辆。如果你经常在上海打车,就会发现打到比亚迪秦或者唐的概率非常高,这些车辆并非私人用车,而是公司统一采购。像EVCARD这样的分时租赁公司,都选择了电动汽车作为服务车辆。

QQ截图20160719154959.jpg

电池成本下降是电动车普及的重要前提。特斯拉的计划是以内华达超级电池工厂为起点,通过供应链优化和规模效应降低电池成本,超级工厂的顺利投产将成为电池成本下降的一个重要转折点。目前,电动车的发展与各国政策密切相关,政府依靠大量补贴鼓励民众购买电动汽车,直接推动了电动车的销量。

电动汽车的发展,既关系到能源问题和基础设施的建设问题,也关系到国内若干年来一直期待的汽车行业弯道超车的实现。

汽车厂商面临出行服务的转型

QQ截图20160719155013.jpg

共享出行带来的未来图景是,不必买车就可以拥有更加自由的出行方式。

2015年,中国汽车保有量达到1.72亿,城市越来越堵,停车位越来越难找,司机们也越来越烦躁。随着共享出行的普及和新一代消费观念的升级,下一代年轻人很可能选择不购买车辆,不再单纯地「占有」车辆,而是和车辆成为一种「使用」关系。当多样化的交通需求被满足的时候,就是汽车销量逐渐下滑的时候。

一旦销量下滑,汽车制造环节的利润将受到影响。因此汽车厂商在积极考虑从制造业向服务业转型,挖掘新的利润增长点。宝马提出了以交通出行为核心的「第一战略」,强调服务业将成为宝马的支柱产业,并提供个人出行的解决方案。宝马旗下还专门设立了一个叫做BMW i Ventures的投资基金,在出行领域的投资非常活跃。

QQ截图20160719155140.jpg

BMW i Ventures 的投资项目

除此之外,每个厂商在共享出行领域的投资活动都非常积极,并且早有计划。

戴姆勒早在2009年推出Car2Go汽车共享服务,并于2012年收购打车应用MyTaxi;通用以5亿美金投资Lyft并创立分享品牌Maven;德国三大厂商戴姆勒、宝马和奥迪以25亿欧元收购地图供应商HERE;福特更是将「汽车+智能移动出行公司」直接打在了自己的宣传海报上。

QQ截图20160719155210.jpg

据统计,汽车是我们生活中利用率最低的物品之一。在环保的关注之余,我们也关注产品的效率提升,包括从能源的转化效率(电能)到汽车的使用率。闲置社会资源的再利用,也就是共享经济的流行,根本上解决的还是资源浪费的问题。社会组织未来的发展一定是更节能,同时更有效率的。

当一辆汽车共享为更多的成员服务时,这辆汽车的设计标准会更加大众化,车型配置变得更加简单,并满足多人出行需求。而像驾驶乐趣这些更加私人的需求,会同步发展,为更加精准小众的客户群体服务。

核心数据指标开始关注汽车行驶里程数

随着我们对交通出行的关注度提高,里程这一重要指标,也将纳入车辆评价的标准。当车和家的创始人李想谈公司的发展方向时,不再是谈定位于什么人群的多少价位的车辆,而是谈30公里使用什么样的车辆,100公里使用什么样的车辆。

汽车行业的下个阶段重点,将从对汽车销量的关注转移到对车辆行驶里程数的关注。车辆行驶里程数将成为未来个性化数据的基础,并通过云端进行存储。

车险的商业模式也可能随之改变,比如UBI车险(Usage-Based Insurance)就是基于车辆行驶里程和车主驾驶行为的数据,制定个性化保费标准。对经营性质的公司来说,里程数的云端获取会更有利于运营数据的计算。另外,里程数的透明化,也将使二手车的车况标准化更加容易。

交通使用的变化,也会引起政策的变化。政府可以基于里程使用情况(路面使用率)设置税费标准,来优化路面交通拥堵。

汽车进入新平台时期

QQ截图20160719155250.jpg

随着汽车燃料的变化,使用的零部件减少,车辆的空间布置将发生改变,车子的外形设计可以有更丰富的想象空间,同时,车身轻量化设计也比以往更加引起重视。另外,车联网服务的升级,自动驾驶(高级辅助驾驶)功能的引入,都预示着汽车将进入新的平台时期。

这里的平台,包括两个方面的内容,一个是产品的新平台,一个是服务的新平台。

宝马i品牌的 “LifeDrive” 结构能帮你简单理解新电动车的平台。Life和Drive是两个不同的模块,Drive 模块承载了电池电机结构,是电动车的核心部件,也承担车辆配重比的重要功能。Life模块则可以更加个性化,有更丰富自由的空间,同时,在自动驾驶技术的发展下,Life模块还需要解决摄像头、雷达和传感器的布置方案。
578c580be6fa5.png

厂家介入共享出行领域的影响在于,共享出行统计的数据能给车辆设计带来重要参考。车辆的工具属性、身份属性和兴趣属性会慢慢剥离,车辆使用方面的相关数据,比如出行距离、行李空间、出行人数、行驶速度和行驶里程等,会不断沉淀,厂家在产品规划时可以更好地贴近消费者的日常需求。

目前,产品开发流程是由整车厂商主导,由供应商协同配合,产品生产下线后,通过经销商进行销售、售后、金融和二手车服务。汽车产品销售的复杂性决定了它需要合作伙伴的加入,只是合作伙伴的名义和合作方式可能会有所不同,这一点在短期内很难有太大的突破。

车辆智能化,从车联网和自动驾驶开始

一个容易让人理解的智能场景是,你开车前往一个商场,即将到达前,车辆为你推荐商场的餐厅信息并自动为你排号,当你到达时,车辆选择好停车场并自动停车熄火。当你用餐结束时,在手机上召唤汽车,车辆自动驶出,空调温度和座椅位置根据你的个人偏好已调节完毕。

这里面涉及到多种功能,地图导航,语音技术,生活(餐饮)信息的数据化,封闭停车场内的自动驾驶等。车辆的智能化,是需要不同信息的数据化和各种软件服务的提升才能够实现的。

但是,有一个疑问,我们是否需要车辆变得更加智能,或者说,车辆的智能是否真的给我们的日常生活提供便利呢?这会不会只是一种可有可无的功能?
QQ截图20160719155328.jpg


在Google无人驾驶的宣传片里,邀请了一些上了年纪的老人家来体验Google无人驾驶车辆。每个乘坐Google无人驾驶车辆的老人最后都露出了开心的笑容。看完宣传片可以明白,无人驾驶车辆可以为更多不便于开车的老人、残疾人提供更加便利的出行需求。这是在赛车场上自由感受车辆加速性能的年轻人们所想不到的。

一个来自Uber的数据显示,Uber的单位成本是每英里2.8美元,其中80%成本来自司机。如果实现自动驾驶最高等级L4之后,成本可以降至0.53美元。也就是说自动驾驶可以降低公司的运营成本,同时,使一批司机失业。另外,自动驾驶使共享出行更加便利、成本更低,并且提高载客率。

新加坡、卢森堡、阿姆斯特丹近期主动提议,以2-4年为目标,推行完全自动驾驶应需出行服务。由MIT分离出的初创企业NuTonomy计划在新加坡的工业园one-north试点完全自动驾驶的出租车服务。而令广告从业者们感到兴奋的是,无需司机的自动驾驶时代,释放出更多的车内时间,媒体内容和广告有了新的想象空间。

在特斯拉的自动驾驶事故之后,行业对自动驾驶的推行变得更加谨慎,这是一件好事。我能想象到的更远的未来应该是,每个不同的人都有自己的生存空间,每个人的出行权力能够得到尊重,每个人都能自由地享受出行的乐趣。

汽车未来的变革虽然还没那么快到来,但已经来临了。
 
来源:网络
325 浏览

特斯拉和保时捷汽车电机构造图

机械自动化类 爽歪歪 2017-01-10 16:17 发表了文章 来自相关话题

 今天和大家分享的内容主要针对汽车电机结构图,里面提到了很多关于电机设计的核心图。电机表面上看起来仅由几个基础部件组成,实际上却是一个复杂的机械、电、磁的高耦合复杂系统。而电机产品的制造流程,其难度并不比制造电池简单。     

1. 特斯拉Model S的电机制造
















2. 保时捷918 Spyder的电机











 
来源:网络 查看全部
 今天和大家分享的内容主要针对汽车电机结构图,里面提到了很多关于电机设计的核心图。电机表面上看起来仅由几个基础部件组成,实际上却是一个复杂的机械、电、磁的高耦合复杂系统。而电机产品的制造流程,其难度并不比制造电池简单。     

1. 特斯拉Model S的电机制造

640.webp_(36)_.jpg


640.webp_(37)_.jpg


640.webp_(38)_.jpg


2. 保时捷918 Spyder的电机

640.webp_(39)_.jpg


640.webp_(40)_.jpg


 
来源:网络
357 浏览

特斯拉电池技术高安全性背后的秘密是什么

机械自动化类 Amazing 2016-11-24 10:01 发表了文章 来自相关话题

   特斯拉一直致力于用最具创新力的技术,加速可持续交通的发展。国内有个叫游侠汽车的团队一直在打造纯电动车,他们对这方面很有研究,此前,他们拆解了特斯拉的电池组,我们跟他们一起来看看这背后到底有什么秘密。






拆解特斯拉电池组

我们都知道特斯拉MODEL S的85kW?h版本的电池组由近7000节18650锂电池构成。但电池组的实际情况,却没多少人见过。之前网上发布的电池分析大都是基于特斯拉的电池专利而分析得出的。这次我们就来为大家揭开特斯拉电池的最后一层神秘面纱。

MODEL S一共有16块电池组,最下面的空挡那块原来有两块电池,上图中已经被游侠汽车拆了下来。特斯拉在每一块电池组上都覆盖一块玻纤板对电池进行简单的保护。每两块电池之间都有金属梁隔开。图中左下角是整个电池组的保险丝,右侧是电池的冷却液接口和冷却液加注口。






这块儿就是特斯拉非常高大上锂电池组,在这块板上一共有444节电池,每74节并联成一组,整块电池板由6组电池串联而成。所以我们可以算出在这款特斯拉MODEL S 85车型上一共有7104节18650锂电池。

电池组中间的那几根线一边连接着电池的极板,另一头连到电池控制模块,这些线是用来检测电池组的电压,从而保证电池组正常工作的。再仔细看可以发现,每一节电池上都有一根很细的保险丝,这个是用来保护整个电池组的,当单节电池出现温度过高之类的异常现象时,保险丝会自动熔断,以达到保护整个电池组的目的(每节电池的正负极都会有一根保险丝)。这么多保险丝需要焊接在电路板上是一项非常大的工程,从工艺上来看应该是由专门的机器人使用超声波焊接完成的。






特斯拉BMS主控芯片

特斯拉的电池主控模块,从PCB板上印刷的logo来看,这块电路板是完全由特斯拉自行研发的。电路板上使用了大量的电阻和电容进行信号调理,光是在我们看到的这一面就有6组电信号的采集线路。

由于特斯拉使用的是18650锂电池,这种锂电池就是我们笔记本电脑中使用的电池,所以其电控方面的技术是非常成熟的,虽然我想了很多办法还是无法看清楚主板上芯片的型号,但还是能推测出上面主要有充放电管理芯片和电池计量管理芯片,相比笔记本电池,其复杂的地方应该在多路的电池信号采集和控制算法上,毕竟电动汽车成百上千节电池的监控和笔记本电脑10节左右的电池监控不在一个数量级上。

特斯拉使用的电池是一致性非常高的,他们也出体了一系列的液体冷却方案来保持电池温度的一致性。在安全性与电动车的续航方面,特斯拉一直做得很好,从目前看到设计结构来说特斯拉的防护措施是值得信赖的。






特斯拉的电池热管理系统

我们此前得知特斯拉是有一套专门的液体循环温度管理系统围绕着每一节单体电池的,但其具体构造,却始终未能见到。有媒体在报道中是这么说的“据特斯拉专利说明介绍,隔离板内部的水可以是静态的也可以是流动的,可以直接存储在隔离板内部管腔,也可以被装到特定的水袋中。如果是流动状态,可以与电池组的冷却系统连接在一起,也可以自建循环系统。”






特斯拉的绝缘防护

经过暴力拆解,使我们终于看到了电池组内部的构造,在锂电池组内部,灌注水乙二醇的导热铝管呈S形状环绕,图中左右两侧的接口为水乙二醇液体的循环接口,在铝管外还包裹着一层橘黄色的绝缘胶带。为防止绝缘胶带意外破裂,导致铝管与锂电池外壳接触造成短路,特斯拉在铝管外部还加了一层绝缘胶进行隔离。在其他没有铝管通过的电池之间,也使用了一层绝缘胶进行隔离。






在我第一眼看到特斯拉的电池做这么多层的绝缘隔离时,我还是非常惊讶的。想了一下才明白过来,特斯拉使用的18650锂电池是定制的,不像我们平时看到的锂电池一样有一层绝缘外衣,其裸露在外的电池外壳都是电池负极,一旦外壳被导体连上,就可能造成短路,严重时甚至会发生起火事故,其后果将不堪设想。

原文来源:网络 查看全部
   特斯拉一直致力于用最具创新力的技术,加速可持续交通的发展。国内有个叫游侠汽车的团队一直在打造纯电动车,他们对这方面很有研究,此前,他们拆解了特斯拉的电池组,我们跟他们一起来看看这背后到底有什么秘密。

QQ截图20161124095655.png


拆解特斯拉电池组

我们都知道特斯拉MODEL S的85kW?h版本的电池组由近7000节18650锂电池构成。但电池组的实际情况,却没多少人见过。之前网上发布的电池分析大都是基于特斯拉的电池专利而分析得出的。这次我们就来为大家揭开特斯拉电池的最后一层神秘面纱。

MODEL S一共有16块电池组,最下面的空挡那块原来有两块电池,上图中已经被游侠汽车拆了下来。特斯拉在每一块电池组上都覆盖一块玻纤板对电池进行简单的保护。每两块电池之间都有金属梁隔开。图中左下角是整个电池组的保险丝,右侧是电池的冷却液接口和冷却液加注口。

QQ截图20161124095718.png


这块儿就是特斯拉非常高大上锂电池组,在这块板上一共有444节电池,每74节并联成一组,整块电池板由6组电池串联而成。所以我们可以算出在这款特斯拉MODEL S 85车型上一共有7104节18650锂电池。

电池组中间的那几根线一边连接着电池的极板,另一头连到电池控制模块,这些线是用来检测电池组的电压,从而保证电池组正常工作的。再仔细看可以发现,每一节电池上都有一根很细的保险丝,这个是用来保护整个电池组的,当单节电池出现温度过高之类的异常现象时,保险丝会自动熔断,以达到保护整个电池组的目的(每节电池的正负极都会有一根保险丝)。这么多保险丝需要焊接在电路板上是一项非常大的工程,从工艺上来看应该是由专门的机器人使用超声波焊接完成的。

QQ截图20161124095737.png


特斯拉BMS主控芯片

特斯拉的电池主控模块,从PCB板上印刷的logo来看,这块电路板是完全由特斯拉自行研发的。电路板上使用了大量的电阻和电容进行信号调理,光是在我们看到的这一面就有6组电信号的采集线路。

由于特斯拉使用的是18650锂电池,这种锂电池就是我们笔记本电脑中使用的电池,所以其电控方面的技术是非常成熟的,虽然我想了很多办法还是无法看清楚主板上芯片的型号,但还是能推测出上面主要有充放电管理芯片和电池计量管理芯片,相比笔记本电池,其复杂的地方应该在多路的电池信号采集和控制算法上,毕竟电动汽车成百上千节电池的监控和笔记本电脑10节左右的电池监控不在一个数量级上。

特斯拉使用的电池是一致性非常高的,他们也出体了一系列的液体冷却方案来保持电池温度的一致性。在安全性与电动车的续航方面,特斯拉一直做得很好,从目前看到设计结构来说特斯拉的防护措施是值得信赖的。

QQ截图20161124095752.png


特斯拉的电池热管理系统

我们此前得知特斯拉是有一套专门的液体循环温度管理系统围绕着每一节单体电池的,但其具体构造,却始终未能见到。有媒体在报道中是这么说的“据特斯拉专利说明介绍,隔离板内部的水可以是静态的也可以是流动的,可以直接存储在隔离板内部管腔,也可以被装到特定的水袋中。如果是流动状态,可以与电池组的冷却系统连接在一起,也可以自建循环系统。”

QQ截图20161124095811.png


特斯拉的绝缘防护

经过暴力拆解,使我们终于看到了电池组内部的构造,在锂电池组内部,灌注水乙二醇的导热铝管呈S形状环绕,图中左右两侧的接口为水乙二醇液体的循环接口,在铝管外还包裹着一层橘黄色的绝缘胶带。为防止绝缘胶带意外破裂,导致铝管与锂电池外壳接触造成短路,特斯拉在铝管外部还加了一层绝缘胶进行隔离。在其他没有铝管通过的电池之间,也使用了一层绝缘胶进行隔离。

QQ截图20161124095831.png


在我第一眼看到特斯拉的电池做这么多层的绝缘隔离时,我还是非常惊讶的。想了一下才明白过来,特斯拉使用的18650锂电池是定制的,不像我们平时看到的锂电池一样有一层绝缘外衣,其裸露在外的电池外壳都是电池负极,一旦外壳被导体连上,就可能造成短路,严重时甚至会发生起火事故,其后果将不堪设想。

原文来源:网络
405 浏览

揭秘特斯拉最新电池轻量化技术

机械自动化类 星旭自动化 2016-11-16 20:00 发表了文章 来自相关话题

近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。






不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。






60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。







电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。
 
电池仍占当前电动车成本50%,面对问题包括
1)能量密度提升和成本下降,2)充电速度提升。
 
值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。
 
此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。






特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。






电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。






我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。






政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。






未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。






三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。






隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。






石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。






未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。
 
 
 
来源:1号机器人

智造家提供 查看全部
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

1.jpg


不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

2.jpg


60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。

3.jpg



电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。
 
电池仍占当前电动车成本50%,面对问题包括
1)能量密度提升和成本下降,2)充电速度提升。
 
值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。
 
此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。

4.jpg


特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。

5.jpg


电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。

6.jpg


我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。

7.jpg


政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。

8.jpg


未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。

9.jpg


三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。

10.jpg


隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。

11.jpg


石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。

12.jpg


未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。
 
 
 
来源:1号机器人

智造家提供
285 浏览

探秘特斯拉的神秘工厂,小伙伴们惊呆了

机械自动化类 冲上云霄 2016-11-10 16:11 发表了文章 来自相关话题

特斯拉 (纯电动汽车品牌)
特斯拉汽车公司(Tesla Motors)成立于2003年,总部设在美国加州的硅谷地带。
 
特斯拉致力于用最具创新力的技术,加速可持续交通的发展。特斯拉在技术上为实现可持续能源供应提供了高效方式,减少全球交通对石油类的依赖;通过开放专利以及与其它汽车厂商合作,大力推动了纯电动汽车在全球的发展。 目前正在全力研发全自动无人驾驶汽车。
 
特斯拉汽车公司生产的几大车型包含Tesla Roadster、Tesla Model S、双电机全轮驱动Model S、Tesla Model X。
 





特斯拉的这个号称全球最智能的全自动化生产车间里,从原材料加工到成品的组装,全部生产过程除了少量零部件外,几乎所有生产工作都自给自足。





▲▲冲压生产线、车身中心、烤漆中心与组装中心,这四大制造环节种总共有超过150台机器人参与工作。当然, 在车间中你很少能见到有人的影子。





▲▲组装中心,全部是机器人





▲▲每一个机器人可以完成多种动作
 





▲▲喷漆烤漆车间
 





▲▲组装车间,按装挡风玻璃
 





▲▲组装车间,安装座椅
 






▲▲6秒钟完成一个发动机盖的冲压
 






▲▲一个机器人就能独立搬运车架
 






▲▲整个过程流水线运营,机器人与机器人之间无缝对接
 
全程都是由电脑控制的机器人,根据事先设定好的程序完成!
 
 
 
来源:网络 查看全部
特斯拉 (纯电动汽车品牌)
特斯拉汽车公司(Tesla Motors)成立于2003年,总部设在美国加州的硅谷地带。
 
特斯拉致力于用最具创新力的技术,加速可持续交通的发展。特斯拉在技术上为实现可持续能源供应提供了高效方式,减少全球交通对石油类的依赖;通过开放专利以及与其它汽车厂商合作,大力推动了纯电动汽车在全球的发展。 目前正在全力研发全自动无人驾驶汽车。
 
特斯拉汽车公司生产的几大车型包含Tesla Roadster、Tesla Model S、双电机全轮驱动Model S、Tesla Model X。
 
640.webp_.jpg


特斯拉的这个号称全球最智能的全自动化生产车间里,从原材料加工到成品的组装,全部生产过程除了少量零部件外,几乎所有生产工作都自给自足。

0.gif

▲▲冲压生产线、车身中心、烤漆中心与组装中心,这四大制造环节种总共有超过150台机器人参与工作。当然, 在车间中你很少能见到有人的影子。

0_(1).gif

▲▲组装中心,全部是机器人

0_(2).gif

▲▲每一个机器人可以完成多种动作
 
0_(3).gif


▲▲喷漆烤漆车间
 
0_(4).gif


▲▲组装车间,按装挡风玻璃
 
s640.webp_.jpg


▲▲组装车间,安装座椅
 

s640.webp_(1)_.jpg


▲▲6秒钟完成一个发动机盖的冲压
 

s640.webp_(2)_.jpg


▲▲一个机器人就能独立搬运车架
 

s640.webp_(3)_.jpg


▲▲整个过程流水线运营,机器人与机器人之间无缝对接
 
全程都是由电脑控制的机器人,根据事先设定好的程序完成!
 
 
 
来源:网络
681 浏览

解析:特斯拉如何增加动力电池的电量

机械自动化类 善思惟 2016-10-28 15:18 发表了文章 来自相关话题

近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文,我们来探究下,这个100kWh是如何做到的?






Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。

在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。






众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。
 


原文来源:网络 查看全部
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文,我们来探究下,这个100kWh是如何做到的?

QQ截图20161028111848.png


Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。

在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

QQ截图20161028111903.png


众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。
 


原文来源:网络
617 浏览

特斯拉的黑科技,不服不行!

机械自动化类 功夫熊猫 2016-09-27 10:21 发表了文章 来自相关话题

自上世纪70年代诞生以来,锂电池成功进入了每个人的生活,但在科技进步如此神速的年代,却没有新的能量存储技术能替代其地位,这足以说明锂电池性能之优越,用途之广泛。随着新能源汽车高速发展,锂电池将得到充分的发展。

提到新能源汽车,就不得不说下马斯克的特斯拉了。时尚的外形、百公里加速3.2秒、续航440公里,这些都是特斯拉Model S作为一款纯电动汽车所展示给人们的数据。







不逊于传统燃油车的性能表现,让特斯拉获得了巨大的成功。同样的锂电池,为何在特斯拉上会有如此不俗的表现?是电动机技术高超?还是电池技术先进?



这不,为了探寻特斯拉电池的奥秘,国外牛人就将一辆Model S的电池板给拆开了,一探究竟。


国外牛人直接给我们展示电池组。电池组安放前后轴之间的底盘位置,其重量可达900公斤。因此造成底盘重心较低,非常利于车辆的高速稳定性。电池组几乎占据车辆底盘的全部,但电池组并没有作为承受力的主体,电池组有加强筋和受力框架保护,大大减低碰撞时的爆炸危险。






电池组整体有标明其身份的铭牌,其中标明了其容量为85kWh,400V直流电,简单来说电池可以装85度电,可供一个普通家庭使用一个月。













电池组表面不仅有塑料膜保护着,而且塑料膜下面还有防火材料的护板。护板下面才是电池组。护板通过螺栓与电池组框架连接,并且连接处充满了密封粘合剂。外观来看电池组保护的不错。














特斯拉Model S电池组板看似非常高大上。其电池组板由16组电池组串联而成,并且每组电池组由444节锂电池,每74节并联形成。因此特斯拉Model S电池组板由7104节18650锂电池组成。















总保险丝位于电池版的前端,并且有外壳保护以防受到撞击。其采用德国Bussmann巴斯曼,额定工作电流为630A,额定电压为690V,分断电流700-200kA,在全球化趋势下该保险丝在印度制造。市场价格在600元左右。












电池板中的16块电池组均衡平铺在壳体上,整体结构紧凑,平铺有利于散热。每一组电池组由六组单体电池包串联而成,但单体电池包的布置并没有采用均衡布置,而是采用不规则的结果,猜测是为了方便电池组内的散热管路布置。

















测量了整个电池板的电压为313.8V,单体电池组电压为196.3V。显然这块电池并没有达到额定的输出电压,可能电池电量并不充足所导致。












电池组内每一节电池都有保险丝链接着,以防单节电池过热危及整体电池过热,并且每节电池保险丝焊接非常精美。电池组中央有线连接到电池控制模块,这些线用来检测电池组的电压,从而保证电池组正常工作。

















电池组整体由透明塑料壳包裹住,两侧有金属散热护板包围。电池厚度比脚掌稍稍厚些,属于扁长型电池组,从而导致车辆重心可大大降低。总体电池组保护的相当不错。

















18650锂电池即普通笔记本电脑的锂电池,众多18650锂电池组成单体电池包,再由电池包组成电池组,并由16组电池组构成电池板。看似简单,但实际需要解决很多连接和散热的问题。












每一组电池组都由一条2/0主线串联起来,主线位于电池板中央,并且有护板覆盖着,较为隐蔽。2/0主线汇集电流后将连接到输出端的接触器。接触器采用泰科电子专门为特斯拉生产的部件。

















电池板中央有一条2/0主线,每组电池组都通过该主线串联输出电流,因此2/0主线尤其重要。特斯拉采用美国Champlain的专门为电动车生产的线缆,其最高可承受600V电压,并且可在-70°-150°之间工作。2/0主线保护的相当不错,不仅有护板保护,而且还有防火材料包裹。这一点可猜测其工作时有可能产生高温。
































电池板内除了电池组外,最多都是“冷却液”管路。每组电池都需要通入一定量的“冷却液”。虽然“冷却液”并没有泵驱动主动流动,但整个电池板所有管路都是相通的,“冷却液”可热胀冷缩进行一定范围流动。






















“冷却液”呈绿色,由50%的水和50%的乙二醇混合而成。“冷却液”配合着铝管使用主要是为了保持电池温度的均衡,防止电池局部温度过高导致电池性能下降。特斯拉的电池热管理系统可将电池组之间的温度控制在±2℃。控制好电池板的温度可延长电池的使用寿命。












电池管理系统(Battery Management System简称BMS)是对电池组进行安全监控及有效管理、提高蓄电池使用效率的装置。对电动车而言,通过该系统对电池组充放电的有效控制,可达到增加续航里程、延长使用寿命、降低运行成本的目的,并保证电池组应用的安全和可靠性。



















电池管理系统主要功能包括数据采集、电池状态计算、能量管理、热管理、安全管理、均衡控制和通信功能等。从电路图上可看到,电池管理系统为特斯拉自行研发,拥有高度的知识产权的核心技术。该系统能自行处理充放电以及发热问题。相信国内厂商较难山寨出来。












这次国外牛人自行拆解特斯拉Model S让我们了解更多细节。18650的数量决定于电池板的总容量;铝管与“冷却液”配合使得电池发热更加均衡;还有电池管理系统BMS复杂的处理使得电池完美充放电。




总得来说,Model S电池保护的相当不错,内部结构设计得恰当好,电池管理系统也相当细致。这些看似不是高端技术的技术,或许正是特斯拉成功的原因吧!
 
 
来源:网络
  查看全部
自上世纪70年代诞生以来,锂电池成功进入了每个人的生活,但在科技进步如此神速的年代,却没有新的能量存储技术能替代其地位,这足以说明锂电池性能之优越,用途之广泛。随着新能源汽车高速发展,锂电池将得到充分的发展。

提到新能源汽车,就不得不说下马斯克的特斯拉了。时尚的外形、百公里加速3.2秒、续航440公里,这些都是特斯拉Model S作为一款纯电动汽车所展示给人们的数据。

11.jpg



不逊于传统燃油车的性能表现,让特斯拉获得了巨大的成功。同样的锂电池,为何在特斯拉上会有如此不俗的表现?是电动机技术高超?还是电池技术先进?



这不,为了探寻特斯拉电池的奥秘,国外牛人就将一辆Model S的电池板给拆开了,一探究竟。


国外牛人直接给我们展示电池组。电池组安放前后轴之间的底盘位置,其重量可达900公斤。因此造成底盘重心较低,非常利于车辆的高速稳定性。电池组几乎占据车辆底盘的全部,但电池组并没有作为承受力的主体,电池组有加强筋和受力框架保护,大大减低碰撞时的爆炸危险。

640.webp_(3)_.jpg


电池组整体有标明其身份的铭牌,其中标明了其容量为85kWh,400V直流电,简单来说电池可以装85度电,可供一个普通家庭使用一个月。

640.webp_(4)_.jpg


640.webp_(5)_.jpg




电池组表面不仅有塑料膜保护着,而且塑料膜下面还有防火材料的护板。护板下面才是电池组。护板通过螺栓与电池组框架连接,并且连接处充满了密封粘合剂。外观来看电池组保护的不错。

640.webp_(6)_.jpg










特斯拉Model S电池组板看似非常高大上。其电池组板由16组电池组串联而成,并且每组电池组由444节锂电池,每74节并联形成。因此特斯拉Model S电池组板由7104节18650锂电池组成。
640.webp_(7)_.jpg


640.webp_.jpg







总保险丝位于电池版的前端,并且有外壳保护以防受到撞击。其采用德国Bussmann巴斯曼,额定工作电流为630A,额定电压为690V,分断电流700-200kA,在全球化趋势下该保险丝在印度制造。市场价格在600元左右。

640.webp_(8)_.jpg








电池板中的16块电池组均衡平铺在壳体上,整体结构紧凑,平铺有利于散热。每一组电池组由六组单体电池包串联而成,但单体电池包的布置并没有采用均衡布置,而是采用不规则的结果,猜测是为了方便电池组内的散热管路布置。


640.webp_(27)_.jpg


640.webp_(28)_.jpg







测量了整个电池板的电压为313.8V,单体电池组电压为196.3V。显然这块电池并没有达到额定的输出电压,可能电池电量并不充足所导致。



640.webp_(29)_.jpg






电池组内每一节电池都有保险丝链接着,以防单节电池过热危及整体电池过热,并且每节电池保险丝焊接非常精美。电池组中央有线连接到电池控制模块,这些线用来检测电池组的电压,从而保证电池组正常工作。



640.webp_(30)_.jpg


640.webp_(1)_.jpg






电池组整体由透明塑料壳包裹住,两侧有金属散热护板包围。电池厚度比脚掌稍稍厚些,属于扁长型电池组,从而导致车辆重心可大大降低。总体电池组保护的相当不错。


640.webp_(31)_.jpg


QQ截图20160927093541.png







18650锂电池即普通笔记本电脑的锂电池,众多18650锂电池组成单体电池包,再由电池包组成电池组,并由16组电池组构成电池板。看似简单,但实际需要解决很多连接和散热的问题。


640.webp_(32)_.jpg







每一组电池组都由一条2/0主线串联起来,主线位于电池板中央,并且有护板覆盖着,较为隐蔽。2/0主线汇集电流后将连接到输出端的接触器。接触器采用泰科电子专门为特斯拉生产的部件。

640.webp_(34)_.jpg


640.webp_(35)_.jpg








电池板中央有一条2/0主线,每组电池组都通过该主线串联输出电流,因此2/0主线尤其重要。特斯拉采用美国Champlain的专门为电动车生产的线缆,其最高可承受600V电压,并且可在-70°-150°之间工作。2/0主线保护的相当不错,不仅有护板保护,而且还有防火材料包裹。这一点可猜测其工作时有可能产生高温。

640.webp_(35)_.jpg


640.webp_(36)_.jpg


640.webp_(37)_.jpg


640.webp_(38)_.jpg


640.webp_(39)_.jpg








电池板内除了电池组外,最多都是“冷却液”管路。每组电池都需要通入一定量的“冷却液”。虽然“冷却液”并没有泵驱动主动流动,但整个电池板所有管路都是相通的,“冷却液”可热胀冷缩进行一定范围流动。


640.webp_(40)_.jpg


640.webp_(41)_.jpg


640.webp_(42)_.jpg







“冷却液”呈绿色,由50%的水和50%的乙二醇混合而成。“冷却液”配合着铝管使用主要是为了保持电池温度的均衡,防止电池局部温度过高导致电池性能下降。特斯拉的电池热管理系统可将电池组之间的温度控制在±2℃。控制好电池板的温度可延长电池的使用寿命。

640.webp_(43)_.jpg








电池管理系统(Battery Management System简称BMS)是对电池组进行安全监控及有效管理、提高蓄电池使用效率的装置。对电动车而言,通过该系统对电池组充放电的有效控制,可达到增加续航里程、延长使用寿命、降低运行成本的目的,并保证电池组应用的安全和可靠性。


640.webp_(44)_.jpg


640.webp_(45)_.jpg









电池管理系统主要功能包括数据采集、电池状态计算、能量管理、热管理、安全管理、均衡控制和通信功能等。从电路图上可看到,电池管理系统为特斯拉自行研发,拥有高度的知识产权的核心技术。该系统能自行处理充放电以及发热问题。相信国内厂商较难山寨出来。


640.webp_(46)_.jpg







这次国外牛人自行拆解特斯拉Model S让我们了解更多细节。18650的数量决定于电池板的总容量;铝管与“冷却液”配合使得电池发热更加均衡;还有电池管理系统BMS复杂的处理使得电池完美充放电。




总得来说,Model S电池保护的相当不错,内部结构设计得恰当好,电池管理系统也相当细致。这些看似不是高端技术的技术,或许正是特斯拉成功的原因吧!
 
 
来源:网络
 
624 浏览

干货:揭秘特斯拉最新电池轻量化技术!

机械自动化类 砸金蛋 2016-09-21 13:53 发表了文章 来自相关话题

近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。

电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。电池仍占当前电动车成本50%,面对问题包括:1)能量密度提升和成本下降,2)充电速度提升。值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。

特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。

电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。

我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。

政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。

未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。

三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。

隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。

石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。

未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。

无人驾驶:智能汽车的终极方向

无人驾驶来袭,科技型公司、初创型公司与传统整车厂、一级供应商争抢高地。目前,获得美国加州无人驾驶汽车路试资格的公司包括:1)科技型公司,如谷歌、特斯拉、Cruise Automation(已被通用收购)、Zoox、Drive.ai、FaradayFuture等;2)传统整车厂与一级供应商,如大众、奔驰、日产、宝马、本田、福特、博世、德尔福等。

科技型公司往往直指高自动化无人驾驶,零包袱+数据优势造就高速发展。科技型公司剑指高级自动驾驶,主要由于:1)科技型公司作为行业新进入者,并无历史“包袱”,可以直接实现跨越式发展;2)科技型公司在数据融合、高精度地图方面具有技术优势;3)通过实现无人驾驶可以真正地将汽车变成下一个“互联网入口”。

特斯拉无人驾驶方案转变:从单目到双目、三目。以Mobileye为代表的单目视觉依赖机器学习的结果,如果前方出现未经学习的物体形状(如卡车的侧面),则该识别功能很可能失效。双目摄像头采用类似人眼的两个相机形成立体图像,从而进行物体定位,有可能最早出现在ModelX车型中。三目摄像头则是在原来单目摄像头的基础上增加了一个远距离窄视角的摄像头,用于长距离目标追踪和交通标志及地面障碍物的提前标识;以及一个近距离宽视角的摄像头,用于探测车辆周围。

国内科技型公司参与造车和智能驾驶。包括百度、阿里、腾讯、乐视、蔚来、车和家、威马等。

传统汽车厂商采用逐步提升的方案,从ADAS逐渐过渡到无人驾驶。预计2020年前后传统汽车厂商将迎来高级自动驾驶产业化高潮。

国内自主品牌发力智能驾驶。长安无人驾驶汽车成功从重庆开往北京参展,已经实现高速路况下自动化驾驶(3级)。7月,上汽和阿里发布首款量产互联网汽车荣威RX5。国内自主品牌车企已经具备智能驾驶技术储,预计最快于2017年实现3级智能驾驶汽车量产。

3、ADAS零组件:感知、决策、执行

汽车智能涉及多种元器件,包括感应识别、执行机构、芯片算法、地图导航、车联网等模块。ADAS的主要功能模块主要包括:感知、决策、执行等。其中,执行模块的难度较大,电控制动执行技术主要被博世、大陆等公司掌握。芯片、激光雷达、毫米波雷达等感知元器件通常由外资公司把控。中资公司在感知决策算法领域有一定积累。V2V和V2X未来可能成为汽车智能感知的组成部分。

感应识别模块:多传感器融合发展

感应识别硬件:以雷达和摄像头为主,多传感器融合发展。目前主流的车载传感器包括超声波雷达、激光雷达、毫米波雷达、摄像头、红外探头等。基于测量能力和环境适应性,预计雷达和摄像头会成为传感器主流,呈现多传感器融合趋势。

毫米波雷达:性价比优秀的测距传感器

毫米波雷达是性价比优秀的传感器,优势在于探距精度高,缺陷在于覆盖角度较小。目前主要应用分硬件和软件两个领域,未来毫米波雷达硬件主要集中在24G和77G两个频段,软件算法等可能逐渐芯片化。

全球汽车毫米波雷达主要供应商为传统汽车电子优势企业。如博世、大陆、海拉等。

毫米波雷达存在国产化预期。国内厂商试图突破核心技术,但目前相对成熟的产品仅有湖南纳雷和厦门意行的24GHz中短距雷达,77GHz雷达刚刚起步。

激光雷达:成本下降是趋势,有望进一步普及

激光雷达可以扫描生成3D高精度地图,是智能驾驶领域中常用的感知元件。激光雷达发射激光束来探测目标的位置、速度等特征量。车载激光雷达采用多个激光发射器和接收器,建立三维点云图,从而达到实时环境感知的目的。

目前,有旋转部件的激光雷达技术相对成熟,国外主流生产厂家为Velodyne和Ibeo。Velodyne采用激光发射、接收一起旋转的方式,产品涵盖16/32/64线等,未来可能拓展128线;Ibeo采用固定激光光源,通过内部玻璃片旋转的方式改变激光光束方向,实现多角度检测,产品涵盖4/8线等,欧百拓为Ibeo的国内合作方。

激光雷达固态化是未来趋势,具有小型化、低成本的优势。创业公司Quanergy与德尔福合作开发出了固态激光雷达,采取相控阵技术,内部不存在旋转部件。传统优势企业Velodyne和Ibeo也推出了混合固态激光雷达,外观上看不到旋转部件,但内部仍靠机械旋转实现激光扫描。我们预计至2020年,固态激光雷达成本或可降至250美元;至2025年,成本可继续降低至100美元;届时激光雷达成本将与普通毫米波雷达相当。

国内有数家公司参与激光雷达的研发与生产,应用领域包括大气污染检测、三维测绘、汽车等。但目前罕有能够应用于智能驾驶场景的高精度激光雷达。

摄像头:龙头地位稳固,有望快速发展

摄像头是常用的ADAS感知识别元件。海外龙头如Mobileye等公司采用基于摄像头的图像识别感知。目前摄像头的应用主要有:1)单目摄像头;2)后视摄像头;3)立体摄像头;4)环视摄像头。

镜头模组:国内镜头行业龙头地位稳固,有望快速发展。光学镜头目前广泛用于手机、车载、相机等领域,由于手机等数码产品增长放缓,镜头产业转移到车载趋势明显。国内行业龙头优势地位明显,如舜宇光学车载后视镜头出货量目前居全球第一位,全球市场占有率达30%左右,已进入各大车企(BMW、Benz、Audi等)前装市场。我们预计未来车载镜头业务提升有望推动国内行业龙头业绩快速增长。

红外夜视:成长空间大,关注国内龙头

红外夜视主要适用于夜间无路灯黑暗路段。中国道路基础设施较好,车载红外夜视的使用场景相对有限。当前红外夜视成本依然偏高,主要用于中高端车型。

执行机构:电控化是趋势,电控制动难度最高

执行机构电控化是智能驾驶的必要条件。我们认为,未来汽车的三大主要执行系统(驱动、制动、转向)都将采用电控化方案,因为:1)电控系统更方便整合智能驾驶技术;2)新能源汽车为电控系统提供了天然的优势平台;3)电控系统可以在同一辆车上实现多种不同的驾驶风格;4)电控化方案可以大幅降低系统复杂度助力汽车轻量化;5)电控化系统直接控制电机,效率更高,响应更快,驾驶更加安全。

驱动系统:由集中式到分布式

驱动系统将由集中式向分布式发展。现有的驱动系统,无论传统燃油汽车,还是电动汽车,都只有一个动力源(发动机/驱动电机),称为集中式驱动。分布式系统即车辆有多个动力源,由多个电机分别驱动不同的车轮。

分布式驱动系统可分为两种:轮边驱动和轮毂驱动。轮边电机,是指每个车轮单独配备一个驱动电机,电机与车轮是分离的,根据电机特性,电机与车轮中间可能配备有齿轮减速机构。轮毂电机,是指电机的外转子即车轮轮毂,可直接在电机外转子上安装轮胎。相比而言,轮边电机更容易实现,而轮毂电机集成度更高。

从发展路径上看,轮边驱动率先实现商业化,轮毂驱动是终极发展目标。制约轮毂电机商业化的问题主要包括:1)成本高;2)高温环境严苛,电机易退磁;3)工作环境恶劣,易进水、多泥沙、多振动,严重影响轮毂电机的寿命;4)一致性要求高;5)舒适性差。但是,相比于轮边电机,轮毂电机集成度更高、无需齿轮传动装置、对安装空间要求小、更适合制动能量回收,是分布式驱动的终极发展目标。

转向系统:线控转向是未来方向

线控转向依靠电信号控制,是未来发展方向。线控转向即取消方向盘与转向机之间的机械连接,代替以传输线和电控单元ECU。相比于传统机械转向系统,线控转向有明显优势:1)节省布置空间,减轻系统重量,有助于汽车轻量化;2)碰撞工况下更加安全,由于取消了转向管柱,正面碰撞情况下的驾驶员安全性提升;3)适应智能汽车,可变速比,转向响应更加智能安全;方便整合车道保持LKA、主动转向、自动泊车等ADAS功能。

可靠性是制约线控转向商业化的主要瓶颈。2013年上市的英菲尼迪Q50是目前唯一的线控转向量产车(保留机械备份),但已两次因转向系统问题被召回。目前提高可靠性的技术方案主要有:1)保留机械备份,即保留原有的转向管柱等连接机构;2)余度管理技术,即采用多套电控系统,互相监控、互为备份,此技术目前尚在实验室研究阶段。

制动系统:EHB/EMB两大路径

电子辅助制动已广泛应用于传统汽车。消费者熟知的辅助制动系统包括:ABS(Antilock Brake System,制动防抱死系统)、ESP(Electronic Stability Program车身电子稳定系统)等。

传统汽车液压制动系统依赖真空助力器,难以满足电动汽车需求;电控制动成为未来趋势。传统汽车的液压制动系统包括:制动踏板,真空助力器,液压系统,制动盘或制动鼓。其中真空助力器将驾驶员较小的踩踏力放大为较大的制动力,因而是核心部件;其真空环境一般取自发动机的进气歧管,因而难以满足电动汽车的需求。取代方案包括:1)电子真空泵;2)电控制动。我们认为,电子真空泵只是暂时的权宜之计,电控制动将是未来发展趋势。

电控制动技术包括EHB和EMB两种方案。电控制动是指依靠电信号传递制动信息,替代液压制动系统。电控制动系统包括电控液压制动EHB和电控机械制动EMB。

电控液压制动EHB技术较为成熟,已应用于量产汽车。EHB系统在制动踏板与液压系统之间仍保留机械连接,利用电机助力推动主缸。EHB的研发始于上世纪九十年代,目前已有比较成熟的产品,如博世ibooster;并已成功应用于量产汽车,如奔驰(SL级,E级)。

电控机械制动EMB是重点研究方向,安全性制约商业化进程。EMB系统无需真空助力器和液压系统,直接依靠电机驱动制动执行机构。具有EMB技术储备的零部件厂商包括布雷博、瀚德等;整车方面尚停留在概念车阶段。EMB系统还存在一系列问题,因而近期难以商业化:1)电机难以满足要求;2)制动高温环境恶劣,电机面临退磁风险;3)汽车的操纵性和舒适性较差;4)安全隐患,电子故障可能导致制动失灵。

芯片:智能决策核心硬件

芯片按照所处功能层划分大致可分为处于感应层的传感器芯片,处于决策层的主控芯片和处于执行层的功率半导体芯片等。其中,传感器芯片和主控芯片是构成智能驾驶的两大基本技术。

主控芯片:着眼传统芯片,展望智能驾驶专用芯片

传统汽车芯片:市场竞争充分,份额较为分散。传统汽车芯片即MCU(Micro Controller Unit),又称单片机。传统汽车芯片参与者众多,包括瑞萨、英飞凌、意法半导体、飞思卡尔、恩智浦等。

智能化程度的提高需要人工智能深度学习的介入。智能驾驶面临的环境是高度复杂的,很难用有限的规则来定义清楚,传统算法的表现往往无法满足要求,而深度学习的优势则非常明显。

深度学习多层模型带来数据量爆炸式增长,传统CPU已经不能满足计算要求。神经网络层数的增加直接导致了运算量的急速增长,传统的CPU架构已经不能满足深度学习计算要求。

显示芯片与传感器芯片:助力ADAS系统主动安全技术发展

传感器芯片一体化有望成为车辆周边识别技术的发展趋势。伴随人们对驾驶安全的需求不断增大,多传感器融合的技术路线将被看好,未来有望实现摄像头、激光雷达、毫米波雷达等多传感器在单一芯片上的融合集成。

Mobileye发布新一代视觉SoC芯片积极进军传感器融合市场。今年5月Mobileye联合意法半导体发布针对自动驾驶的新一代视觉系统芯片——EyeQ5。EyeQ5将装备8枚多线程CPU内核,同时还会搭载18枚Mobileye的下一代视觉处理器,最多支持20个外部传感器(摄像头、雷达或激光雷达),主要定位于L3或L4自动驾驶阶段的应用。

GPU(图形处理器)众核同步并行运算,适于智能汽车深度学习。GPU包括数以千计的更小、更高效的核心(最多的英伟达K80有5700个核),因此常被称为“众核”;GPU只有非常简单的控制逻辑并省去了Cache,适合把同样的指令流并行发送到众核上,进行海量数据的快速处理。事实证明,在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。

GPU王者NVIDIA:搭建自动驾驶汽车专用计算机。目前国际GPU市场被NVIDIA和AMD两大公司瓜分。截至2015年第二季度,NVIDIA市场份额已达到82%。谷歌无人驾驶汽车所采用的技术部件中,就采用了NVIDIA的移动终端处理器Tegra(4核CPU+256核GPU)。NVIDIA还专为智能汽车设计了两大平台:自动驾驶汽车平台DRIVEPX,数字座舱计算机DRIVE CX。

硬件加速:FPGA(可编程门阵列)利用硬件运算,具有显著速度优势。FPGA内部包含大量重复的IOB(输入输出模块)、CLB(可配置逻辑块,内部是基本的逻辑门电路,与门、或门等)和布线信道等基本单元。FPGA的输入到输出之间并没有计算过程,只是通过烧录好的硬件电路完成信号的传输,因此运行速度非常高,可达CPU的40倍。而正是因为FPGA的这种工作模式,决定了需要预先布置大量门阵列以满足用户的设计需求,因此有“以面积换速度”的说法:使用大量的门电路阵列,消耗更多的FPGA内核资源,用来提升整个系统的运行速度。

FPGA国际市场:四大厂商垄断。目前在全球市场中,Xilinx、Altera两大公司对FPGA的技术与市场占据绝对垄断地位,两家公司占有将近90%市场份额,专利达6000余项之多。剩余市场份额主要被Lattice和Microsemi所占有,这两家的专利也达3000多项。2014年Xilinx、Altera两大公司营业收入分别为23.8亿美元和19.3亿美元;而Lattice和Microsemi(仅FPGA部分)收入分别为3.66亿美元和2.75亿美元。

专用加速:ASIC(专用集成电路)是针对专门应用而设计的集成电路。ASIC是针对特定工作负载时速度最快且执行效率最高的处理方案。与通用集成电路相比,ASIC具有体积更小、功耗更低、性能提高、保密性增强、成本低等优点。

谷歌专用定制化芯片TPU:服务于AlphaGo等人工智能技术。今年5月的I/O大会上,谷歌披露了其以ASIC为基础的定制化芯片TPU(TensorProcessing Unit,张量处理器),并明确表示这款芯片不会对外销售。TPU为谷歌人工智能做出了许多贡献:1)机器学习人工智能系统RankBrain,用来帮助谷歌处理搜索结果;2)街景Street View,用来提高地图与导航的准确性;3)围棋人工智能AlphaGo,其最初版本使用了48CPU+8GPU,随后的分布式版本使用了1202CPU+176GPU(即对战樊麾时的配置),几个月后硬件平台再次升级至TPU(即对战李世乭时的配置)。

寒武纪推出我国首款定制化神经网络处理器。寒武纪科技面向深度学习等人工智能关键技术进行专用芯片的研发,可用于云服务器和智能终端上的图像识别、语音识别、人脸识别等应用。

半导体芯片:执行端不可取代

以独立体系工作,占据芯片市场一席之地。半导体芯片功率半导体主要由集成电路和分立功率器件两部分组成。IGBT(InsulatedGate Bipolar Transistor)是纯电动车的核心模块,同时充电桩的建设也运用了大量的功率器件模块。据华虹宏力披露情况,到2020年我国年产新能源汽车预计达200万台,仅8寸的IGBT的芯片26万片之多。此外,据Yole Developpement 预计,2016-2022年SiC功率半导体市场规模的年均复合增速将达到38%。
 
 
来源:网络 查看全部
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文 ,我们来探究下,这个100kWh是如何做到的?

Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。

“小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。

电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。

智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。

共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上, C2C模式(如凹凸租车、PP租车等)初露端倪。

资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。

“智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。

1、电动:降低造车门槛,开启汽车智能革命的序幕

电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。

电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。

能够帮助提升电池和电动车性能的技术值得重点关注。电池仍占当前电动车成本50%,面对问题包括:1)能量密度提升和成本下降,2)充电速度提升。值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。

新能源拉开智能序幕

电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。

特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。

电动化是未来发展趋势

电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。

节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。

我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。

政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012—2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。

中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。

未来技术进步方向:动力电池技术提升

新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。

动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。

三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。

隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。

石墨烯或将用于锂离子电池:导电剂、电极材料。石墨烯导电性能、力学性能优异。目前尚处于研发期,预计2020年市场空间可达5亿。

未来技术进步方向:轻量化发展

轻量化可显著提高续驶里程,是电动汽车发展的必然选择。电动汽车重量降低10%,对应续航里程可增加5.5%。在动力电池能量密度尚不能完全满足要求的当下,轻量化成为提高续驶里程的重要手段。万钢部长也在2016中国电动汽车百人会论坛上再次强调:“轻量化”是中国电动汽车发展的方向之一。

汽车轻量化材料繁多:高强度钢、玻璃纤维、铝合金、镁合金、碳纤维等。铝合金被广泛应用,碳纤维是未来方向。铝合金应用于汽车轻量化的技术较为成熟,已达量产水平:特斯拉Model S采用了全铝车身;奇瑞捷豹路虎的全铝工厂已经竣工投产;车和家的铝合金工厂也已落户常州。碳纤维材料由于其突出的减重性能和比强度而受到广泛关注,但由于其造价高昂,目前只有极少数量产车型采用:如宝马i3、长城华冠的首款车型K50。

2、智能:未来汽车主战场,从ADAS到无人驾驶

智能汽车将重塑车企的核心竞争力。在汽油机时代,发动机、变速箱组成的动力总成是传统车企的核心竞争力。对于大型乘用车企业而言,发动机往往采用集团内InHouse的做法;新进入者无法购买合适的高性能发动机,只能通过自行研发积累。但一款好的发动机的研发周期往往需要十年以上的时间;而一旦批产发动机出现质量问题,又可能对车企的品牌形成巨大伤害。因此,发动机也就成为了传统整车企业最大的壁垒和核心竞争力。

电动车时代,智能将成车企的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新进入的造车企业往往以“智能化”为卖点,以炫酷的前沿技术吸引更年轻的消费者。未来10-20年,汽车产品及其产业链将面临巨大变化和挑战。传统车企不得不重新披挂上阵,加速智能应用的开发进度,以应对新进入者的挑战。

未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。

ADAS:智能驾驶的落地载体

我们当前处于辅助驾驶前期,距离彻底的无人驾驶还有较长距离。美国汽车工程学会SAE将自动驾驶分为0到5级。目前L1和L2技术已相对成熟,L3和L4技术即将量产(特斯拉已经提前进入了3级自动驾驶阶段)。彻底的L5无人驾驶是指全路段、全天候的,无需人工干预的全自动驾驶,汽车可自主完成加速、制动、转向等动作,可能需要至少十年才能达到产业化阶段。

智能驾驶以技术为核心驱动力,打造感知、决策、执行的闭环控制。目前ADAS核心技术主要掌握在外资公司手中,包括博世、大陆、德尔福、电装等。中国多年积累的工程师红利体现,创业型公司大量涌现,本土工程师和海归力量共同推动技术进步。但综合考虑法规、标准、公司规模和抗风险能力等要素,整车厂对大规模采购创业型ADAS产品仍有顾虑。中资公司可能在后装ADAS和预警类ADAS领域寻求突破。

智能驾驶亦为三层金字塔供应链格局。1)顶端的OEM和科技型造车企业;2)ADAS供应商;3)底层零部件供应商。

市场空间:万亿无人驾驶,千亿ADAS,百亿元器件。全球汽车销量增速放缓,但是整体销量仍超过8000万。中国市场2015年行业销量达2460万辆,带动相关产业链超2.5万亿。ADAS系统有望先行普及,预计2020年渗透率有望超30%,市场规模接近2000亿。同时产业链上游相关元器件行业如雷达、摄像头、HUD(抬头显示)等需求均有望快速增长,2020年有望达到百亿级别。

根据功能不同,ADAS可分为预警类和执行类。在遇到紧急情况时,预警类ADAS只发出警告信号,由驾驶员决定如何操作;而执行类ADAS则可自主判断决策,控制车辆实现加速、制动、转向等动作,以避免碰撞。

国外汽车零部件巨头在ADAS领域保持优势地位。包括大陆、德尔福、电装、奥托立夫、博世等。

创业型公司大量涌现,上市公司亦希望借由参股和收购创业公司方式进入ADAS领域。借由资本的力量和中国多年积累的工程师红利,ADAS领域里的创业型公司快速涌现。我们认为,只有真正掌握核心技术、具有较强市场拓展能力(整车厂渠道)、具备出色融资能力、管理团队优秀且持衡的本土创业型才有可能最终胜出。在ADAS创业竞赛中获得最终胜利决非易事。

无人驾驶:智能汽车的终极方向

无人驾驶来袭,科技型公司、初创型公司与传统整车厂、一级供应商争抢高地。目前,获得美国加州无人驾驶汽车路试资格的公司包括:1)科技型公司,如谷歌、特斯拉、Cruise Automation(已被通用收购)、Zoox、Drive.ai、FaradayFuture等;2)传统整车厂与一级供应商,如大众、奔驰、日产、宝马、本田、福特、博世、德尔福等。

科技型公司往往直指高自动化无人驾驶,零包袱+数据优势造就高速发展。科技型公司剑指高级自动驾驶,主要由于:1)科技型公司作为行业新进入者,并无历史“包袱”,可以直接实现跨越式发展;2)科技型公司在数据融合、高精度地图方面具有技术优势;3)通过实现无人驾驶可以真正地将汽车变成下一个“互联网入口”。

特斯拉无人驾驶方案转变:从单目到双目、三目。以Mobileye为代表的单目视觉依赖机器学习的结果,如果前方出现未经学习的物体形状(如卡车的侧面),则该识别功能很可能失效。双目摄像头采用类似人眼的两个相机形成立体图像,从而进行物体定位,有可能最早出现在ModelX车型中。三目摄像头则是在原来单目摄像头的基础上增加了一个远距离窄视角的摄像头,用于长距离目标追踪和交通标志及地面障碍物的提前标识;以及一个近距离宽视角的摄像头,用于探测车辆周围。

国内科技型公司参与造车和智能驾驶。包括百度、阿里、腾讯、乐视、蔚来、车和家、威马等。

传统汽车厂商采用逐步提升的方案,从ADAS逐渐过渡到无人驾驶。预计2020年前后传统汽车厂商将迎来高级自动驾驶产业化高潮。

国内自主品牌发力智能驾驶。长安无人驾驶汽车成功从重庆开往北京参展,已经实现高速路况下自动化驾驶(3级)。7月,上汽和阿里发布首款量产互联网汽车荣威RX5。国内自主品牌车企已经具备智能驾驶技术储,预计最快于2017年实现3级智能驾驶汽车量产。

3、ADAS零组件:感知、决策、执行

汽车智能涉及多种元器件,包括感应识别、执行机构、芯片算法、地图导航、车联网等模块。ADAS的主要功能模块主要包括:感知、决策、执行等。其中,执行模块的难度较大,电控制动执行技术主要被博世、大陆等公司掌握。芯片、激光雷达、毫米波雷达等感知元器件通常由外资公司把控。中资公司在感知决策算法领域有一定积累。V2V和V2X未来可能成为汽车智能感知的组成部分。

感应识别模块:多传感器融合发展

感应识别硬件:以雷达和摄像头为主,多传感器融合发展。目前主流的车载传感器包括超声波雷达、激光雷达、毫米波雷达、摄像头、红外探头等。基于测量能力和环境适应性,预计雷达和摄像头会成为传感器主流,呈现多传感器融合趋势。

毫米波雷达:性价比优秀的测距传感器

毫米波雷达是性价比优秀的传感器,优势在于探距精度高,缺陷在于覆盖角度较小。目前主要应用分硬件和软件两个领域,未来毫米波雷达硬件主要集中在24G和77G两个频段,软件算法等可能逐渐芯片化。

全球汽车毫米波雷达主要供应商为传统汽车电子优势企业。如博世、大陆、海拉等。

毫米波雷达存在国产化预期。国内厂商试图突破核心技术,但目前相对成熟的产品仅有湖南纳雷和厦门意行的24GHz中短距雷达,77GHz雷达刚刚起步。

激光雷达:成本下降是趋势,有望进一步普及

激光雷达可以扫描生成3D高精度地图,是智能驾驶领域中常用的感知元件。激光雷达发射激光束来探测目标的位置、速度等特征量。车载激光雷达采用多个激光发射器和接收器,建立三维点云图,从而达到实时环境感知的目的。

目前,有旋转部件的激光雷达技术相对成熟,国外主流生产厂家为Velodyne和Ibeo。Velodyne采用激光发射、接收一起旋转的方式,产品涵盖16/32/64线等,未来可能拓展128线;Ibeo采用固定激光光源,通过内部玻璃片旋转的方式改变激光光束方向,实现多角度检测,产品涵盖4/8线等,欧百拓为Ibeo的国内合作方。

激光雷达固态化是未来趋势,具有小型化、低成本的优势。创业公司Quanergy与德尔福合作开发出了固态激光雷达,采取相控阵技术,内部不存在旋转部件。传统优势企业Velodyne和Ibeo也推出了混合固态激光雷达,外观上看不到旋转部件,但内部仍靠机械旋转实现激光扫描。我们预计至2020年,固态激光雷达成本或可降至250美元;至2025年,成本可继续降低至100美元;届时激光雷达成本将与普通毫米波雷达相当。

国内有数家公司参与激光雷达的研发与生产,应用领域包括大气污染检测、三维测绘、汽车等。但目前罕有能够应用于智能驾驶场景的高精度激光雷达。

摄像头:龙头地位稳固,有望快速发展

摄像头是常用的ADAS感知识别元件。海外龙头如Mobileye等公司采用基于摄像头的图像识别感知。目前摄像头的应用主要有:1)单目摄像头;2)后视摄像头;3)立体摄像头;4)环视摄像头。

镜头模组:国内镜头行业龙头地位稳固,有望快速发展。光学镜头目前广泛用于手机、车载、相机等领域,由于手机等数码产品增长放缓,镜头产业转移到车载趋势明显。国内行业龙头优势地位明显,如舜宇光学车载后视镜头出货量目前居全球第一位,全球市场占有率达30%左右,已进入各大车企(BMW、Benz、Audi等)前装市场。我们预计未来车载镜头业务提升有望推动国内行业龙头业绩快速增长。

红外夜视:成长空间大,关注国内龙头

红外夜视主要适用于夜间无路灯黑暗路段。中国道路基础设施较好,车载红外夜视的使用场景相对有限。当前红外夜视成本依然偏高,主要用于中高端车型。

执行机构:电控化是趋势,电控制动难度最高

执行机构电控化是智能驾驶的必要条件。我们认为,未来汽车的三大主要执行系统(驱动、制动、转向)都将采用电控化方案,因为:1)电控系统更方便整合智能驾驶技术;2)新能源汽车为电控系统提供了天然的优势平台;3)电控系统可以在同一辆车上实现多种不同的驾驶风格;4)电控化方案可以大幅降低系统复杂度助力汽车轻量化;5)电控化系统直接控制电机,效率更高,响应更快,驾驶更加安全。

驱动系统:由集中式到分布式

驱动系统将由集中式向分布式发展。现有的驱动系统,无论传统燃油汽车,还是电动汽车,都只有一个动力源(发动机/驱动电机),称为集中式驱动。分布式系统即车辆有多个动力源,由多个电机分别驱动不同的车轮。

分布式驱动系统可分为两种:轮边驱动和轮毂驱动。轮边电机,是指每个车轮单独配备一个驱动电机,电机与车轮是分离的,根据电机特性,电机与车轮中间可能配备有齿轮减速机构。轮毂电机,是指电机的外转子即车轮轮毂,可直接在电机外转子上安装轮胎。相比而言,轮边电机更容易实现,而轮毂电机集成度更高。

从发展路径上看,轮边驱动率先实现商业化,轮毂驱动是终极发展目标。制约轮毂电机商业化的问题主要包括:1)成本高;2)高温环境严苛,电机易退磁;3)工作环境恶劣,易进水、多泥沙、多振动,严重影响轮毂电机的寿命;4)一致性要求高;5)舒适性差。但是,相比于轮边电机,轮毂电机集成度更高、无需齿轮传动装置、对安装空间要求小、更适合制动能量回收,是分布式驱动的终极发展目标。

转向系统:线控转向是未来方向

线控转向依靠电信号控制,是未来发展方向。线控转向即取消方向盘与转向机之间的机械连接,代替以传输线和电控单元ECU。相比于传统机械转向系统,线控转向有明显优势:1)节省布置空间,减轻系统重量,有助于汽车轻量化;2)碰撞工况下更加安全,由于取消了转向管柱,正面碰撞情况下的驾驶员安全性提升;3)适应智能汽车,可变速比,转向响应更加智能安全;方便整合车道保持LKA、主动转向、自动泊车等ADAS功能。

可靠性是制约线控转向商业化的主要瓶颈。2013年上市的英菲尼迪Q50是目前唯一的线控转向量产车(保留机械备份),但已两次因转向系统问题被召回。目前提高可靠性的技术方案主要有:1)保留机械备份,即保留原有的转向管柱等连接机构;2)余度管理技术,即采用多套电控系统,互相监控、互为备份,此技术目前尚在实验室研究阶段。

制动系统:EHB/EMB两大路径

电子辅助制动已广泛应用于传统汽车。消费者熟知的辅助制动系统包括:ABS(Antilock Brake System,制动防抱死系统)、ESP(Electronic Stability Program车身电子稳定系统)等。

传统汽车液压制动系统依赖真空助力器,难以满足电动汽车需求;电控制动成为未来趋势。传统汽车的液压制动系统包括:制动踏板,真空助力器,液压系统,制动盘或制动鼓。其中真空助力器将驾驶员较小的踩踏力放大为较大的制动力,因而是核心部件;其真空环境一般取自发动机的进气歧管,因而难以满足电动汽车的需求。取代方案包括:1)电子真空泵;2)电控制动。我们认为,电子真空泵只是暂时的权宜之计,电控制动将是未来发展趋势。

电控制动技术包括EHB和EMB两种方案。电控制动是指依靠电信号传递制动信息,替代液压制动系统。电控制动系统包括电控液压制动EHB和电控机械制动EMB。

电控液压制动EHB技术较为成熟,已应用于量产汽车。EHB系统在制动踏板与液压系统之间仍保留机械连接,利用电机助力推动主缸。EHB的研发始于上世纪九十年代,目前已有比较成熟的产品,如博世ibooster;并已成功应用于量产汽车,如奔驰(SL级,E级)。

电控机械制动EMB是重点研究方向,安全性制约商业化进程。EMB系统无需真空助力器和液压系统,直接依靠电机驱动制动执行机构。具有EMB技术储备的零部件厂商包括布雷博、瀚德等;整车方面尚停留在概念车阶段。EMB系统还存在一系列问题,因而近期难以商业化:1)电机难以满足要求;2)制动高温环境恶劣,电机面临退磁风险;3)汽车的操纵性和舒适性较差;4)安全隐患,电子故障可能导致制动失灵。

芯片:智能决策核心硬件

芯片按照所处功能层划分大致可分为处于感应层的传感器芯片,处于决策层的主控芯片和处于执行层的功率半导体芯片等。其中,传感器芯片和主控芯片是构成智能驾驶的两大基本技术。

主控芯片:着眼传统芯片,展望智能驾驶专用芯片

传统汽车芯片:市场竞争充分,份额较为分散。传统汽车芯片即MCU(Micro Controller Unit),又称单片机。传统汽车芯片参与者众多,包括瑞萨、英飞凌、意法半导体、飞思卡尔、恩智浦等。

智能化程度的提高需要人工智能深度学习的介入。智能驾驶面临的环境是高度复杂的,很难用有限的规则来定义清楚,传统算法的表现往往无法满足要求,而深度学习的优势则非常明显。

深度学习多层模型带来数据量爆炸式增长,传统CPU已经不能满足计算要求。神经网络层数的增加直接导致了运算量的急速增长,传统的CPU架构已经不能满足深度学习计算要求。

显示芯片与传感器芯片:助力ADAS系统主动安全技术发展

传感器芯片一体化有望成为车辆周边识别技术的发展趋势。伴随人们对驾驶安全的需求不断增大,多传感器融合的技术路线将被看好,未来有望实现摄像头、激光雷达、毫米波雷达等多传感器在单一芯片上的融合集成。

Mobileye发布新一代视觉SoC芯片积极进军传感器融合市场。今年5月Mobileye联合意法半导体发布针对自动驾驶的新一代视觉系统芯片——EyeQ5。EyeQ5将装备8枚多线程CPU内核,同时还会搭载18枚Mobileye的下一代视觉处理器,最多支持20个外部传感器(摄像头、雷达或激光雷达),主要定位于L3或L4自动驾驶阶段的应用。

GPU(图形处理器)众核同步并行运算,适于智能汽车深度学习。GPU包括数以千计的更小、更高效的核心(最多的英伟达K80有5700个核),因此常被称为“众核”;GPU只有非常简单的控制逻辑并省去了Cache,适合把同样的指令流并行发送到众核上,进行海量数据的快速处理。事实证明,在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。

GPU王者NVIDIA:搭建自动驾驶汽车专用计算机。目前国际GPU市场被NVIDIA和AMD两大公司瓜分。截至2015年第二季度,NVIDIA市场份额已达到82%。谷歌无人驾驶汽车所采用的技术部件中,就采用了NVIDIA的移动终端处理器Tegra(4核CPU+256核GPU)。NVIDIA还专为智能汽车设计了两大平台:自动驾驶汽车平台DRIVEPX,数字座舱计算机DRIVE CX。

硬件加速:FPGA(可编程门阵列)利用硬件运算,具有显著速度优势。FPGA内部包含大量重复的IOB(输入输出模块)、CLB(可配置逻辑块,内部是基本的逻辑门电路,与门、或门等)和布线信道等基本单元。FPGA的输入到输出之间并没有计算过程,只是通过烧录好的硬件电路完成信号的传输,因此运行速度非常高,可达CPU的40倍。而正是因为FPGA的这种工作模式,决定了需要预先布置大量门阵列以满足用户的设计需求,因此有“以面积换速度”的说法:使用大量的门电路阵列,消耗更多的FPGA内核资源,用来提升整个系统的运行速度。

FPGA国际市场:四大厂商垄断。目前在全球市场中,Xilinx、Altera两大公司对FPGA的技术与市场占据绝对垄断地位,两家公司占有将近90%市场份额,专利达6000余项之多。剩余市场份额主要被Lattice和Microsemi所占有,这两家的专利也达3000多项。2014年Xilinx、Altera两大公司营业收入分别为23.8亿美元和19.3亿美元;而Lattice和Microsemi(仅FPGA部分)收入分别为3.66亿美元和2.75亿美元。

专用加速:ASIC(专用集成电路)是针对专门应用而设计的集成电路。ASIC是针对特定工作负载时速度最快且执行效率最高的处理方案。与通用集成电路相比,ASIC具有体积更小、功耗更低、性能提高、保密性增强、成本低等优点。

谷歌专用定制化芯片TPU:服务于AlphaGo等人工智能技术。今年5月的I/O大会上,谷歌披露了其以ASIC为基础的定制化芯片TPU(TensorProcessing Unit,张量处理器),并明确表示这款芯片不会对外销售。TPU为谷歌人工智能做出了许多贡献:1)机器学习人工智能系统RankBrain,用来帮助谷歌处理搜索结果;2)街景Street View,用来提高地图与导航的准确性;3)围棋人工智能AlphaGo,其最初版本使用了48CPU+8GPU,随后的分布式版本使用了1202CPU+176GPU(即对战樊麾时的配置),几个月后硬件平台再次升级至TPU(即对战李世乭时的配置)。

寒武纪推出我国首款定制化神经网络处理器。寒武纪科技面向深度学习等人工智能关键技术进行专用芯片的研发,可用于云服务器和智能终端上的图像识别、语音识别、人脸识别等应用。

半导体芯片:执行端不可取代

以独立体系工作,占据芯片市场一席之地。半导体芯片功率半导体主要由集成电路和分立功率器件两部分组成。IGBT(InsulatedGate Bipolar Transistor)是纯电动车的核心模块,同时充电桩的建设也运用了大量的功率器件模块。据华虹宏力披露情况,到2020年我国年产新能源汽车预计达200万台,仅8寸的IGBT的芯片26万片之多。此外,据Yole Developpement 预计,2016-2022年SiC功率半导体市场规模的年均复合增速将达到38%。
 
 
来源:网络
351 浏览

几百亿砸不出个特斯拉,为何新能源汽车被补贴成扶不起的阿斗?

机械自动化类 泰迪的礼物 2016-09-01 08:36 发表了文章 来自相关话题

[摘要] 近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。国家花了大笔的补贴,结果不是消费者买到了称心如意的新能源汽车,而是车商造出来一堆品质低劣,性能差劲的“新能源汽车”,然后在标上动辄20多万的极高价格销售。

在汽车销量榜上,这些车都卖出去了,但是在路上却非常少见。真正被牌照限制,不得不买新能源汽车的消费者,环顾所有可选产品,竟然没有几个型号能达到燃油车的平均的水平。

另外一方面,高额补贴下是频频的骗补传闻,企业如同打了鸡血一样纷纷成立新公司,制造出五花八门的车型,骗取新能源补贴。国家对新能源补贴是花了大钱的,几百亿砸下去,特斯拉都应该砸出来几个了,但是种下的是龙种,收获的是跳蚤。这是为什么呢?

一、秘密在于细节

现在,媒体倾向于把板子打到骗补企业和个人身上,说是这些人的主观原因。但是,资本永远是逐利的,只要风险(被法办)的机率小,骗补贴的利益大,就一定有资本会参与骗补。

真正的问题是补贴政策制订的本身就有重大问题。现行的政策不是鼓励发展新能源汽车,而是在鼓励骗补、真正做有市场的车反而被压制。补贴政策制订的时候完全不考虑市场,不考虑技术,违反客观规律。

把板子打到造烂车,骗补贴的企业身上只对了一半,另外一半要打在订政策的部门上面。按照补贴政策,恰恰是造烂车才能利益最大化。

为什么呢?秘密就在细节里面。

2015年的新能源补贴政策,大客车按照米数补贴,车长补贴多,车长10米就国家补贴50万,如果地方补贴一比一配比就是100万。问题是车长几米和新能源补贴有什么关系?造壳子长不看里程,不看电机就补贴,用20万成本造一个车,拿100万补贴完全可以。所以,就有了大客车骗补的疯狂,很多企业买燃油车车壳,自己加上电池包电机就去骗100万补贴了。

2016年,制订政策的部门意识到2015年规定荒谬,规定了按照形势里程拿补贴,超过250公里给5.5万国家补贴,地方补贴配比是11万。但是里程是个可以做手脚的东西。2吨的车,跑250公里纯电,大约需要50度电池,一度电池2000块,电池成本就10万,你给11万补贴说的过去。

800公斤的小车,跑250公里纯电,25度电池,甚至20度电池就够了。电池成本4万,你也给11万补贴。

厂商会怎么做?做2吨的车,总成本30万,补贴11万,还有19万,加上利润,税费,渠道卖25万才行,25万,你买国产电动车吗?做800公斤的小车,加上电池成本8万,补贴已经超过成本了,但是定价就不能订便宜了,也要定25万,先拿到11万补贴再说。车白送都赚了。去了补贴13万没人买怎么办?自己成立公司自己买。左手倒右手。然后,拆了(电池)送回去继续生产,循环利用,再拿12万补贴。

真正造新能源汽车的,反而不能从新能源政策中收益多少,25万的车没人买啊! 造假骗补的,反而最贴合政策,你让企业怎么干?

补贴按照里程,车本身的成本越低,定价越高越赚钱,车企做烂车,关联公司买反而是利益最大化的方案。在这种政策引导之下,就是政府花了几百亿,引导企业做了一大堆离开补贴一辆卖不出去的烂车。把宝贵的资源浪费掉了。

二、正确的补贴政策应该顺应市场

新能源有很好的机会,现在技术方面已经没有瓶颈、发展对了方向,十年扶持一两个世界领先水平的企业是可以的(规模是特斯拉的几十倍)。但是要认清需求和市场。

新能源的真实市场其实分三块:

第一块纯电动只在公交和出租有前途,里程足够长,油电池差价才能解决电池成本问题。公交和出租还有有政府提供的集中充电,公交和出租系统集中,电池还容易的做到梯次利用。解决电池处置不当的污染问题。

第二块主流家用只有插电混合动力有前途。一是以后插电和燃油差价会越来越小,最后成本差几万相当于高配的价格。二是插电在纯电动下可以做出燃油无法相比的优势,噪音,震动,加速能力,动力的线性等等。10万买福克斯级别的舒适,15万买凯美瑞级别的舒适,福克斯rs级别的加速,市内摩托车级别的费用,这才是插电的方向。

第三块是低速电动车,这块应该订低于汽车的专用标准,允许部分道路行驶。3万块,一公里几分钱,在县城自己院子充电,或者车位安装个插座。县城可以跑好几圈。这是典型使用场景。高速,省道,大城市不允许进去。政策应该围绕这三块来补。

三、如何才能补出中国的特斯拉?

汽车是个产业链很长,很成熟的产业。汽车的质量与供应链的水平关系很大。优质汽车是10000多个优质配件组合而成。要设计一辆出色的车,砸钱就可以办到。要小规模手工造几十辆超越特斯拉ModelS的车,几十亿投资的互联网企业也可能做到。要造几万辆,几十万辆量产的比特斯拉ModelS更好更便宜的车就没有那么简单了。

你必须买到和特斯拉同样优质,甚至更好的配件,同时还需要用更低的价格买到。而又好又便宜采购的前提是量。

特斯拉年销量几万辆。如果一家新公司采购几十万辆,那么供应链就会给你比特斯拉更好的配件,更便宜的价格。你甚至可以自己收购或者成立一个配件厂,自己做高品质低价格的配件。有10000多这种配件,有优秀的设计和完备的测试,有一流的人才,比特斯拉更好更便宜的车就造出来了。

而最难的是怎么上一年几十万的量? 中国的补贴和政府政策执行力恰恰可以解决量的问题。

出租车,公车,国企单位,事业单位……,中国政府控制的汽车年采购量是要超过百万的。通过政策、牌照、补贴,中国完全可以人为制造出几个年销量几十万的巨头。全国采购政府控制车辆,像美国采购战斗机一样,全国就订两三个平台。

一个平台要求纯电动,插电混动模块化自由组合,轿车,SUV,MPV共平台。就是说,百万级别的采购量,大部分配件都是可以通用的。有A平台的纯电出租车,有A平台的插电家用轿车,都市SUV,公务用MPV。只要是A平台的就有大量通用采购的零件,以最大的量保证采购的配件优质低价。

全国让所有车厂拿方案,通过测试对比,优选三五个平台,通过实践检验最终只留两三家。谁有本事30万做出雷克萨斯的可靠性,迈巴赫的舒适,兰博基尼的加速,订单每个月3万台,就每台给它15万补贴,把它扶持成一流企业。而30万的价格随着量的不断增大,研发成本的平摊,会降低到25万,20万,最终没有补贴也具有强大的市场竞争力。

这样,企业在优胜劣汰中进步,最终形成两三个互相激烈竞争的超级巨头。把中国制造的新能源汽车推到超越特斯拉的高度。中国的特斯拉自然也就补出来了。

韩国其实就走类似强制合并的道路,用了几十年发展出了现代汽车。中国人口是韩国的几十倍,中国的体制和十多亿的市场规模其实很容易搞出来几个世界级的汽车巨头。

而一切要先从调整政策开始。
 
来源:网络 查看全部
[摘要] 近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。近日,随着政府新能源政策的调整,各个媒体自媒体上都充斥着对新能源补贴政策的吐槽。国家花了大笔的补贴,结果不是消费者买到了称心如意的新能源汽车,而是车商造出来一堆品质低劣,性能差劲的“新能源汽车”,然后在标上动辄20多万的极高价格销售。

在汽车销量榜上,这些车都卖出去了,但是在路上却非常少见。真正被牌照限制,不得不买新能源汽车的消费者,环顾所有可选产品,竟然没有几个型号能达到燃油车的平均的水平。

另外一方面,高额补贴下是频频的骗补传闻,企业如同打了鸡血一样纷纷成立新公司,制造出五花八门的车型,骗取新能源补贴。国家对新能源补贴是花了大钱的,几百亿砸下去,特斯拉都应该砸出来几个了,但是种下的是龙种,收获的是跳蚤。这是为什么呢?

一、秘密在于细节

现在,媒体倾向于把板子打到骗补企业和个人身上,说是这些人的主观原因。但是,资本永远是逐利的,只要风险(被法办)的机率小,骗补贴的利益大,就一定有资本会参与骗补。

真正的问题是补贴政策制订的本身就有重大问题。现行的政策不是鼓励发展新能源汽车,而是在鼓励骗补、真正做有市场的车反而被压制。补贴政策制订的时候完全不考虑市场,不考虑技术,违反客观规律。

把板子打到造烂车,骗补贴的企业身上只对了一半,另外一半要打在订政策的部门上面。按照补贴政策,恰恰是造烂车才能利益最大化。

为什么呢?秘密就在细节里面。

2015年的新能源补贴政策,大客车按照米数补贴,车长补贴多,车长10米就国家补贴50万,如果地方补贴一比一配比就是100万。问题是车长几米和新能源补贴有什么关系?造壳子长不看里程,不看电机就补贴,用20万成本造一个车,拿100万补贴完全可以。所以,就有了大客车骗补的疯狂,很多企业买燃油车车壳,自己加上电池包电机就去骗100万补贴了。

2016年,制订政策的部门意识到2015年规定荒谬,规定了按照形势里程拿补贴,超过250公里给5.5万国家补贴,地方补贴配比是11万。但是里程是个可以做手脚的东西。2吨的车,跑250公里纯电,大约需要50度电池,一度电池2000块,电池成本就10万,你给11万补贴说的过去。

800公斤的小车,跑250公里纯电,25度电池,甚至20度电池就够了。电池成本4万,你也给11万补贴。

厂商会怎么做?做2吨的车,总成本30万,补贴11万,还有19万,加上利润,税费,渠道卖25万才行,25万,你买国产电动车吗?做800公斤的小车,加上电池成本8万,补贴已经超过成本了,但是定价就不能订便宜了,也要定25万,先拿到11万补贴再说。车白送都赚了。去了补贴13万没人买怎么办?自己成立公司自己买。左手倒右手。然后,拆了(电池)送回去继续生产,循环利用,再拿12万补贴。

真正造新能源汽车的,反而不能从新能源政策中收益多少,25万的车没人买啊! 造假骗补的,反而最贴合政策,你让企业怎么干?

补贴按照里程,车本身的成本越低,定价越高越赚钱,车企做烂车,关联公司买反而是利益最大化的方案。在这种政策引导之下,就是政府花了几百亿,引导企业做了一大堆离开补贴一辆卖不出去的烂车。把宝贵的资源浪费掉了。

二、正确的补贴政策应该顺应市场

新能源有很好的机会,现在技术方面已经没有瓶颈、发展对了方向,十年扶持一两个世界领先水平的企业是可以的(规模是特斯拉的几十倍)。但是要认清需求和市场。

新能源的真实市场其实分三块:

第一块纯电动只在公交和出租有前途,里程足够长,油电池差价才能解决电池成本问题。公交和出租还有有政府提供的集中充电,公交和出租系统集中,电池还容易的做到梯次利用。解决电池处置不当的污染问题。

第二块主流家用只有插电混合动力有前途。一是以后插电和燃油差价会越来越小,最后成本差几万相当于高配的价格。二是插电在纯电动下可以做出燃油无法相比的优势,噪音,震动,加速能力,动力的线性等等。10万买福克斯级别的舒适,15万买凯美瑞级别的舒适,福克斯rs级别的加速,市内摩托车级别的费用,这才是插电的方向。

第三块是低速电动车,这块应该订低于汽车的专用标准,允许部分道路行驶。3万块,一公里几分钱,在县城自己院子充电,或者车位安装个插座。县城可以跑好几圈。这是典型使用场景。高速,省道,大城市不允许进去。政策应该围绕这三块来补。

三、如何才能补出中国的特斯拉?

汽车是个产业链很长,很成熟的产业。汽车的质量与供应链的水平关系很大。优质汽车是10000多个优质配件组合而成。要设计一辆出色的车,砸钱就可以办到。要小规模手工造几十辆超越特斯拉ModelS的车,几十亿投资的互联网企业也可能做到。要造几万辆,几十万辆量产的比特斯拉ModelS更好更便宜的车就没有那么简单了。

你必须买到和特斯拉同样优质,甚至更好的配件,同时还需要用更低的价格买到。而又好又便宜采购的前提是量。

特斯拉年销量几万辆。如果一家新公司采购几十万辆,那么供应链就会给你比特斯拉更好的配件,更便宜的价格。你甚至可以自己收购或者成立一个配件厂,自己做高品质低价格的配件。有10000多这种配件,有优秀的设计和完备的测试,有一流的人才,比特斯拉更好更便宜的车就造出来了。

而最难的是怎么上一年几十万的量? 中国的补贴和政府政策执行力恰恰可以解决量的问题。

出租车,公车,国企单位,事业单位……,中国政府控制的汽车年采购量是要超过百万的。通过政策、牌照、补贴,中国完全可以人为制造出几个年销量几十万的巨头。全国采购政府控制车辆,像美国采购战斗机一样,全国就订两三个平台。

一个平台要求纯电动,插电混动模块化自由组合,轿车,SUV,MPV共平台。就是说,百万级别的采购量,大部分配件都是可以通用的。有A平台的纯电出租车,有A平台的插电家用轿车,都市SUV,公务用MPV。只要是A平台的就有大量通用采购的零件,以最大的量保证采购的配件优质低价。

全国让所有车厂拿方案,通过测试对比,优选三五个平台,通过实践检验最终只留两三家。谁有本事30万做出雷克萨斯的可靠性,迈巴赫的舒适,兰博基尼的加速,订单每个月3万台,就每台给它15万补贴,把它扶持成一流企业。而30万的价格随着量的不断增大,研发成本的平摊,会降低到25万,20万,最终没有补贴也具有强大的市场竞争力。

这样,企业在优胜劣汰中进步,最终形成两三个互相激烈竞争的超级巨头。把中国制造的新能源汽车推到超越特斯拉的高度。中国的特斯拉自然也就补出来了。

韩国其实就走类似强制合并的道路,用了几十年发展出了现代汽车。中国人口是韩国的几十倍,中国的体制和十多亿的市场规模其实很容易搞出来几个世界级的汽车巨头。

而一切要先从调整政策开始。
 
来源:网络
1297 浏览

一个特斯拉还不够,如何抓住未来汽车变革的机会

设计类 唐古拉 2016-07-19 15:58 发表了文章 来自相关话题

[摘要] 让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。科技企业迫不及待地加入这场革命。是谁驱动行业变革?如果你将特斯拉和福特T型车上市之后的销量进行对比,会发现惊人的巧合。不单单是增长曲线,1910-1912年的福特T型车和2013-2015年的特斯拉,销量数据几乎是一致的。




来自官方公开数据

这两款车都属于当时市场上的创新产品,这几年正是它们从萌芽步入小规模商业化的阶段。而它们能不能驱动行业变革,取决于它们是否能够顺利度过大规模商业化阶段。众所周知,福特T型车做到了。1916年,福特T型车达到50万产量,福特的流水线革命带来了整个汽车工业的变革。福特T型车后来被评选为20世纪的「世纪之车」。





同样的,特斯拉计划2020年要达到50万产量,这个产量扩张计划和福特 T 型车保持了周期上的一致,却被不少人质疑。特斯拉的发展并没有想象中那么顺利,产能危机,人才流失,超级工厂延期,自动驾驶死亡事故,特斯拉的新闻热点一直没有断过。

对特斯拉抱有信心的人,相信它具备破坏式创新的颠覆条件。被称作「破坏式创新之父」的克莱顿·克里斯坦森曾经说过,成熟企业一般都具备破坏式创新产品的开发能力,但由于这样的产品不满足已有价值网络的客户需求,成熟企业不会选择大量跟进,这给了新兴企业机会。而新兴企业一旦成为技术变革的领先者,行业的颠覆就不可避免的开始了。

光一个特斯拉是不够的





让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。

2009年3月,特拉维斯·卡兰尼克(Travis Kalanick) 和 格瑞特·坎普(Garrett Camp)在美国创立Uber,在持续的努力下,推动全球走入共享出行时代。同样是2009年,Google开始研发无人驾驶汽车,至今行驶里程超过150万英里。

特斯拉,Uber和Google,这三个力量结合在一起,推动了产品和需求的跨越式发展,整个行业进入了新的变革点。如果说燃料的替代还是出于节能减排的需求,技术门槛的降低有利于新生代厂商的加入,那智能化、共享化则为新能源注入更具想象力的未来。

汽车的意义改变了,不再是传统意义的私家轿车,越来越多的私家车加入共享的行业。当0到100+公里的多样化出行需求都能被满足时,公与私的边界将被彻底打破。科技企业迫不及待地加入这场革命。

我们可以确认的是,未来汽车的发展会从此处延展。

可能有三分之一的车成为电动车





彭博社预测2040年电动汽车份额将达到35%。高盛预测10年内电动汽车将会获得22%的市场份额,每年电动汽车销售量将是2500万辆左右。在大众集团公布的2025年规划里,电动车的销量计划将在200万辆至300万辆之间,占总销量的20%-25%。

用一个汽车厂商高管的话来说,电动汽车不是趋势,而是现实了。如果说机构预测你还有所怀疑的话,厂家的预测是最具有参考价值的,因为汽车厂商至少需要提前四五年进行产品规划,现在的销量计划对未来五年的产量分配有主要影响。

这样的决心,跟特斯拉的示范效应有关。汽车厂商认识到电动汽车的性能开始赶超汽油车,而电动汽车的续航里程也开始满足人的一些出行需求。电动车的增长会比以往都更加迅速。电动汽车努力了一百多年,终于等到了走入一线的机会。

由于电动汽车的维护成本较低,电动汽车会先从B端开始渗透,慢慢影响到C端消费者。滴滴出行总裁柳青在中国互联网大会上表示,五年内滴滴平台注册电动车要达到100万辆。如果你经常在上海打车,就会发现打到比亚迪秦或者唐的概率非常高,这些车辆并非私人用车,而是公司统一采购。像EVCARD这样的分时租赁公司,都选择了电动汽车作为服务车辆。





电池成本下降是电动车普及的重要前提。特斯拉的计划是以内华达超级电池工厂为起点,通过供应链优化和规模效应降低电池成本,超级工厂的顺利投产将成为电池成本下降的一个重要转折点。目前,电动车的发展与各国政策密切相关,政府依靠大量补贴鼓励民众购买电动汽车,直接推动了电动车的销量。

电动汽车的发展,既关系到能源问题和基础设施的建设问题,也关系到国内若干年来一直期待的汽车行业弯道超车的实现。

汽车厂商面临出行服务的转型





共享出行带来的未来图景是,不必买车就可以拥有更加自由的出行方式。

2015年,中国汽车保有量达到1.72亿,城市越来越堵,停车位越来越难找,司机们也越来越烦躁。随着共享出行的普及和新一代消费观念的升级,下一代年轻人很可能选择不购买车辆,不再单纯地「占有」车辆,而是和车辆成为一种「使用」关系。当多样化的交通需求被满足的时候,就是汽车销量逐渐下滑的时候。

一旦销量下滑,汽车制造环节的利润将受到影响。因此汽车厂商在积极考虑从制造业向服务业转型,挖掘新的利润增长点。宝马提出了以交通出行为核心的「第一战略」,强调服务业将成为宝马的支柱产业,并提供个人出行的解决方案。宝马旗下还专门设立了一个叫做BMW i Ventures的投资基金,在出行领域的投资非常活跃。





BMW i Ventures 的投资项目

除此之外,每个厂商在共享出行领域的投资活动都非常积极,并且早有计划。

戴姆勒早在2009年推出Car2Go汽车共享服务,并于2012年收购打车应用MyTaxi;通用以5亿美金投资Lyft并创立分享品牌Maven;德国三大厂商戴姆勒、宝马和奥迪以25亿欧元收购地图供应商HERE;福特更是将「汽车+智能移动出行公司」直接打在了自己的宣传海报上。





据统计,汽车是我们生活中利用率最低的物品之一。在环保的关注之余,我们也关注产品的效率提升,包括从能源的转化效率(电能)到汽车的使用率。闲置社会资源的再利用,也就是共享经济的流行,根本上解决的还是资源浪费的问题。社会组织未来的发展一定是更节能,同时更有效率的。

当一辆汽车共享为更多的成员服务时,这辆汽车的设计标准会更加大众化,车型配置变得更加简单,并满足多人出行需求。而像驾驶乐趣这些更加私人的需求,会同步发展,为更加精准小众的客户群体服务。

核心数据指标开始关注汽车行驶里程数

随着我们对交通出行的关注度提高,里程这一重要指标,也将纳入车辆评价的标准。当车和家的创始人李想谈公司的发展方向时,不再是谈定位于什么人群的多少价位的车辆,而是谈30公里使用什么样的车辆,100公里使用什么样的车辆。

汽车行业的下个阶段重点,将从对汽车销量的关注转移到对车辆行驶里程数的关注。车辆行驶里程数将成为未来个性化数据的基础,并通过云端进行存储。

车险的商业模式也可能随之改变,比如UBI车险(Usage-Based Insurance)就是基于车辆行驶里程和车主驾驶行为的数据,制定个性化保费标准。对经营性质的公司来说,里程数的云端获取会更有利于运营数据的计算。另外,里程数的透明化,也将使二手车的车况标准化更加容易。

交通使用的变化,也会引起政策的变化。政府可以基于里程使用情况(路面使用率)设置税费标准,来优化路面交通拥堵。

汽车进入新平台时期





随着汽车燃料的变化,使用的零部件减少,车辆的空间布置将发生改变,车子的外形设计可以有更丰富的想象空间,同时,车身轻量化设计也比以往更加引起重视。另外,车联网服务的升级,自动驾驶(高级辅助驾驶)功能的引入,都预示着汽车将进入新的平台时期。

这里的平台,包括两个方面的内容,一个是产品的新平台,一个是服务的新平台。

宝马i品牌的 “LifeDrive” 结构能帮你简单理解新电动车的平台。Life和Drive是两个不同的模块,Drive 模块承载了电池电机结构,是电动车的核心部件,也承担车辆配重比的重要功能。Life模块则可以更加个性化,有更丰富自由的空间,同时,在自动驾驶技术的发展下,Life模块还需要解决摄像头、雷达和传感器的布置方案。




厂家介入共享出行领域的影响在于,共享出行统计的数据能给车辆设计带来重要参考。车辆的工具属性、身份属性和兴趣属性会慢慢剥离,车辆使用方面的相关数据,比如出行距离、行李空间、出行人数、行驶速度和行驶里程等,会不断沉淀,厂家在产品规划时可以更好地贴近消费者的日常需求。

目前,产品开发流程是由整车厂商主导,由供应商协同配合,产品生产下线后,通过经销商进行销售、售后、金融和二手车服务。汽车产品销售的复杂性决定了它需要合作伙伴的加入,只是合作伙伴的名义和合作方式可能会有所不同,这一点在短期内很难有太大的突破。

车辆智能化,从车联网和自动驾驶开始

一个容易让人理解的智能场景是,你开车前往一个商场,即将到达前,车辆为你推荐商场的餐厅信息并自动为你排号,当你到达时,车辆选择好停车场并自动停车熄火。当你用餐结束时,在手机上召唤汽车,车辆自动驶出,空调温度和座椅位置根据你的个人偏好已调节完毕。

这里面涉及到多种功能,地图导航,语音技术,生活(餐饮)信息的数据化,封闭停车场内的自动驾驶等。车辆的智能化,是需要不同信息的数据化和各种软件服务的提升才能够实现的。

但是,有一个疑问,我们是否需要车辆变得更加智能,或者说,车辆的智能是否真的给我们的日常生活提供便利呢?这会不会只是一种可有可无的功能?





在Google无人驾驶的宣传片里,邀请了一些上了年纪的老人家来体验Google无人驾驶车辆。每个乘坐Google无人驾驶车辆的老人最后都露出了开心的笑容。看完宣传片可以明白,无人驾驶车辆可以为更多不便于开车的老人、残疾人提供更加便利的出行需求。这是在赛车场上自由感受车辆加速性能的年轻人们所想不到的。

一个来自Uber的数据显示,Uber的单位成本是每英里2.8美元,其中80%成本来自司机。如果实现自动驾驶最高等级L4之后,成本可以降至0.53美元。也就是说自动驾驶可以降低公司的运营成本,同时,使一批司机失业。另外,自动驾驶使共享出行更加便利、成本更低,并且提高载客率。

新加坡、卢森堡、阿姆斯特丹近期主动提议,以2-4年为目标,推行完全自动驾驶应需出行服务。由MIT分离出的初创企业NuTonomy计划在新加坡的工业园one-north试点完全自动驾驶的出租车服务。而令广告从业者们感到兴奋的是,无需司机的自动驾驶时代,释放出更多的车内时间,媒体内容和广告有了新的想象空间。

在特斯拉的自动驾驶事故之后,行业对自动驾驶的推行变得更加谨慎,这是一件好事。我能想象到的更远的未来应该是,每个不同的人都有自己的生存空间,每个人的出行权力能够得到尊重,每个人都能自由地享受出行的乐趣。

汽车未来的变革虽然还没那么快到来,但已经来临了。
 
来源:网络 查看全部
[摘要] 让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。科技企业迫不及待地加入这场革命。是谁驱动行业变革?如果你将特斯拉和福特T型车上市之后的销量进行对比,会发现惊人的巧合。不单单是增长曲线,1910-1912年的福特T型车和2013-2015年的特斯拉,销量数据几乎是一致的。
QQ截图20160719154815.jpg

来自官方公开数据

这两款车都属于当时市场上的创新产品,这几年正是它们从萌芽步入小规模商业化的阶段。而它们能不能驱动行业变革,取决于它们是否能够顺利度过大规模商业化阶段。众所周知,福特T型车做到了。1916年,福特T型车达到50万产量,福特的流水线革命带来了整个汽车工业的变革。福特T型车后来被评选为20世纪的「世纪之车」。

QQ图片20160719154833.png

同样的,特斯拉计划2020年要达到50万产量,这个产量扩张计划和福特 T 型车保持了周期上的一致,却被不少人质疑。特斯拉的发展并没有想象中那么顺利,产能危机,人才流失,超级工厂延期,自动驾驶死亡事故,特斯拉的新闻热点一直没有断过。

对特斯拉抱有信心的人,相信它具备破坏式创新的颠覆条件。被称作「破坏式创新之父」的克莱顿·克里斯坦森曾经说过,成熟企业一般都具备破坏式创新产品的开发能力,但由于这样的产品不满足已有价值网络的客户需求,成熟企业不会选择大量跟进,这给了新兴企业机会。而新兴企业一旦成为技术变革的领先者,行业的颠覆就不可避免的开始了。

光一个特斯拉是不够的

QQ图片20160719154848.png

让我们把视角拉远一点,从汽车的生产到汽车的使用,似乎都发生了变化。

2009年3月,特拉维斯·卡兰尼克(Travis Kalanick) 和 格瑞特·坎普(Garrett Camp)在美国创立Uber,在持续的努力下,推动全球走入共享出行时代。同样是2009年,Google开始研发无人驾驶汽车,至今行驶里程超过150万英里。

特斯拉,Uber和Google,这三个力量结合在一起,推动了产品和需求的跨越式发展,整个行业进入了新的变革点。如果说燃料的替代还是出于节能减排的需求,技术门槛的降低有利于新生代厂商的加入,那智能化、共享化则为新能源注入更具想象力的未来。

汽车的意义改变了,不再是传统意义的私家轿车,越来越多的私家车加入共享的行业。当0到100+公里的多样化出行需求都能被满足时,公与私的边界将被彻底打破。科技企业迫不及待地加入这场革命。

我们可以确认的是,未来汽车的发展会从此处延展。

可能有三分之一的车成为电动车

QQ截图20160719154946.jpg

彭博社预测2040年电动汽车份额将达到35%。高盛预测10年内电动汽车将会获得22%的市场份额,每年电动汽车销售量将是2500万辆左右。在大众集团公布的2025年规划里,电动车的销量计划将在200万辆至300万辆之间,占总销量的20%-25%。

用一个汽车厂商高管的话来说,电动汽车不是趋势,而是现实了。如果说机构预测你还有所怀疑的话,厂家的预测是最具有参考价值的,因为汽车厂商至少需要提前四五年进行产品规划,现在的销量计划对未来五年的产量分配有主要影响。

这样的决心,跟特斯拉的示范效应有关。汽车厂商认识到电动汽车的性能开始赶超汽油车,而电动汽车的续航里程也开始满足人的一些出行需求。电动车的增长会比以往都更加迅速。电动汽车努力了一百多年,终于等到了走入一线的机会。

由于电动汽车的维护成本较低,电动汽车会先从B端开始渗透,慢慢影响到C端消费者。滴滴出行总裁柳青在中国互联网大会上表示,五年内滴滴平台注册电动车要达到100万辆。如果你经常在上海打车,就会发现打到比亚迪秦或者唐的概率非常高,这些车辆并非私人用车,而是公司统一采购。像EVCARD这样的分时租赁公司,都选择了电动汽车作为服务车辆。

QQ截图20160719154959.jpg

电池成本下降是电动车普及的重要前提。特斯拉的计划是以内华达超级电池工厂为起点,通过供应链优化和规模效应降低电池成本,超级工厂的顺利投产将成为电池成本下降的一个重要转折点。目前,电动车的发展与各国政策密切相关,政府依靠大量补贴鼓励民众购买电动汽车,直接推动了电动车的销量。

电动汽车的发展,既关系到能源问题和基础设施的建设问题,也关系到国内若干年来一直期待的汽车行业弯道超车的实现。

汽车厂商面临出行服务的转型

QQ截图20160719155013.jpg

共享出行带来的未来图景是,不必买车就可以拥有更加自由的出行方式。

2015年,中国汽车保有量达到1.72亿,城市越来越堵,停车位越来越难找,司机们也越来越烦躁。随着共享出行的普及和新一代消费观念的升级,下一代年轻人很可能选择不购买车辆,不再单纯地「占有」车辆,而是和车辆成为一种「使用」关系。当多样化的交通需求被满足的时候,就是汽车销量逐渐下滑的时候。

一旦销量下滑,汽车制造环节的利润将受到影响。因此汽车厂商在积极考虑从制造业向服务业转型,挖掘新的利润增长点。宝马提出了以交通出行为核心的「第一战略」,强调服务业将成为宝马的支柱产业,并提供个人出行的解决方案。宝马旗下还专门设立了一个叫做BMW i Ventures的投资基金,在出行领域的投资非常活跃。

QQ截图20160719155140.jpg

BMW i Ventures 的投资项目

除此之外,每个厂商在共享出行领域的投资活动都非常积极,并且早有计划。

戴姆勒早在2009年推出Car2Go汽车共享服务,并于2012年收购打车应用MyTaxi;通用以5亿美金投资Lyft并创立分享品牌Maven;德国三大厂商戴姆勒、宝马和奥迪以25亿欧元收购地图供应商HERE;福特更是将「汽车+智能移动出行公司」直接打在了自己的宣传海报上。

QQ截图20160719155210.jpg

据统计,汽车是我们生活中利用率最低的物品之一。在环保的关注之余,我们也关注产品的效率提升,包括从能源的转化效率(电能)到汽车的使用率。闲置社会资源的再利用,也就是共享经济的流行,根本上解决的还是资源浪费的问题。社会组织未来的发展一定是更节能,同时更有效率的。

当一辆汽车共享为更多的成员服务时,这辆汽车的设计标准会更加大众化,车型配置变得更加简单,并满足多人出行需求。而像驾驶乐趣这些更加私人的需求,会同步发展,为更加精准小众的客户群体服务。

核心数据指标开始关注汽车行驶里程数

随着我们对交通出行的关注度提高,里程这一重要指标,也将纳入车辆评价的标准。当车和家的创始人李想谈公司的发展方向时,不再是谈定位于什么人群的多少价位的车辆,而是谈30公里使用什么样的车辆,100公里使用什么样的车辆。

汽车行业的下个阶段重点,将从对汽车销量的关注转移到对车辆行驶里程数的关注。车辆行驶里程数将成为未来个性化数据的基础,并通过云端进行存储。

车险的商业模式也可能随之改变,比如UBI车险(Usage-Based Insurance)就是基于车辆行驶里程和车主驾驶行为的数据,制定个性化保费标准。对经营性质的公司来说,里程数的云端获取会更有利于运营数据的计算。另外,里程数的透明化,也将使二手车的车况标准化更加容易。

交通使用的变化,也会引起政策的变化。政府可以基于里程使用情况(路面使用率)设置税费标准,来优化路面交通拥堵。

汽车进入新平台时期

QQ截图20160719155250.jpg

随着汽车燃料的变化,使用的零部件减少,车辆的空间布置将发生改变,车子的外形设计可以有更丰富的想象空间,同时,车身轻量化设计也比以往更加引起重视。另外,车联网服务的升级,自动驾驶(高级辅助驾驶)功能的引入,都预示着汽车将进入新的平台时期。

这里的平台,包括两个方面的内容,一个是产品的新平台,一个是服务的新平台。

宝马i品牌的 “LifeDrive” 结构能帮你简单理解新电动车的平台。Life和Drive是两个不同的模块,Drive 模块承载了电池电机结构,是电动车的核心部件,也承担车辆配重比的重要功能。Life模块则可以更加个性化,有更丰富自由的空间,同时,在自动驾驶技术的发展下,Life模块还需要解决摄像头、雷达和传感器的布置方案。
578c580be6fa5.png

厂家介入共享出行领域的影响在于,共享出行统计的数据能给车辆设计带来重要参考。车辆的工具属性、身份属性和兴趣属性会慢慢剥离,车辆使用方面的相关数据,比如出行距离、行李空间、出行人数、行驶速度和行驶里程等,会不断沉淀,厂家在产品规划时可以更好地贴近消费者的日常需求。

目前,产品开发流程是由整车厂商主导,由供应商协同配合,产品生产下线后,通过经销商进行销售、售后、金融和二手车服务。汽车产品销售的复杂性决定了它需要合作伙伴的加入,只是合作伙伴的名义和合作方式可能会有所不同,这一点在短期内很难有太大的突破。

车辆智能化,从车联网和自动驾驶开始

一个容易让人理解的智能场景是,你开车前往一个商场,即将到达前,车辆为你推荐商场的餐厅信息并自动为你排号,当你到达时,车辆选择好停车场并自动停车熄火。当你用餐结束时,在手机上召唤汽车,车辆自动驶出,空调温度和座椅位置根据你的个人偏好已调节完毕。

这里面涉及到多种功能,地图导航,语音技术,生活(餐饮)信息的数据化,封闭停车场内的自动驾驶等。车辆的智能化,是需要不同信息的数据化和各种软件服务的提升才能够实现的。

但是,有一个疑问,我们是否需要车辆变得更加智能,或者说,车辆的智能是否真的给我们的日常生活提供便利呢?这会不会只是一种可有可无的功能?
QQ截图20160719155328.jpg


在Google无人驾驶的宣传片里,邀请了一些上了年纪的老人家来体验Google无人驾驶车辆。每个乘坐Google无人驾驶车辆的老人最后都露出了开心的笑容。看完宣传片可以明白,无人驾驶车辆可以为更多不便于开车的老人、残疾人提供更加便利的出行需求。这是在赛车场上自由感受车辆加速性能的年轻人们所想不到的。

一个来自Uber的数据显示,Uber的单位成本是每英里2.8美元,其中80%成本来自司机。如果实现自动驾驶最高等级L4之后,成本可以降至0.53美元。也就是说自动驾驶可以降低公司的运营成本,同时,使一批司机失业。另外,自动驾驶使共享出行更加便利、成本更低,并且提高载客率。

新加坡、卢森堡、阿姆斯特丹近期主动提议,以2-4年为目标,推行完全自动驾驶应需出行服务。由MIT分离出的初创企业NuTonomy计划在新加坡的工业园one-north试点完全自动驾驶的出租车服务。而令广告从业者们感到兴奋的是,无需司机的自动驾驶时代,释放出更多的车内时间,媒体内容和广告有了新的想象空间。

在特斯拉的自动驾驶事故之后,行业对自动驾驶的推行变得更加谨慎,这是一件好事。我能想象到的更远的未来应该是,每个不同的人都有自己的生存空间,每个人的出行权力能够得到尊重,每个人都能自由地享受出行的乐趣。

汽车未来的变革虽然还没那么快到来,但已经来临了。
 
来源:网络
795 浏览

特斯拉是轮边电机?别逗了, 教你轻松搞懂轮毂电机/轮边电机/集中式电机技术

管理类 螺丝钉 2016-07-01 13:05 发表了文章 来自相关话题

[摘要] 今天我们来聊一聊什么是轮边电机、轮毂电机、集中式电机,技术贴值得收藏。为什么特斯拉拆了外壳只剩底盘依旧像一件工艺品,而且前后还能腾出空间拥有两个大大的行李舱?民间流传较为广泛的解读是这样说的:“特斯拉集成能力强,他们用的是轮边电机”。





刚刚的答案看似有几分道理。但是这一回答中却有着一个较为严重的错误。特斯拉电驱动系统放在了后桥两轮之间就可以称为轮边电机吗?就这一误区今天我们就来聊一聊什么是轮边电机、轮毂电机、集中式电机。

轮毂电机

轮毂电机技术又称车轮内装电机技术,因为轮毂电机具备单个车轮独立驱动的特性,所以无论是前驱、后驱还是四驱形式,它都可以比较轻松地实现,全时四驱在轮毂电机驱动的车辆上实现起来非常容易。同时轮毂电机可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向,这个本事对于特种车辆相当有价值,所以这项技术多使用在特种车辆上例如矿山车、工程车等等。




 
米其林轮毂电机结构

而且应用轮毂电机可以大大简化车辆的结构,传统的离合器、变速箱、传动轴将不复存在。这也意味着节省出更多的空间。更重要的一点轮毂电机可以和传统动力并联使用,这对于混合动力车型同样很有意义。






然而在市面量产的乘用车辆上并没有一辆车型使用了此项技术,说了这么多优点量产车不用是几个意思!原因是它的一些弊端会使得其在乘用车的使用上有一点水土不服,轮毂电机要安装在轮圈内,这使得车辆的簧下质量增加首先问题就是不利于操控;第二点电涡流制动容量不高,在重型车上需要配合机械制动系统共同工作。对于电动车而言,要达到更高的制动效果则需要耗费更高的能量,在一定程度上影响了续航里程;第三如果动力输出发生细微差距那么在高速行驶中对车辆的方向控制也会造成放大数倍的失控影响。而且难以实现润滑,会使行星齿轮减速结构的齿轮磨损较快使用寿命变短,不易散热,工艺不精良噪音就会较大。在起步、顶风或爬坡等需要承载大扭矩的情况时需要大电流,很容易损坏电池和永磁体,电机效率峰值区域小,负载电流超过一定值后效率下降很快。

综上所述轮毂电机和量产乘用车的结合就目前而言依旧是喜与悲交织的一场故事。

轮边电机

所谓轮边电机是电机装在车轮边上以单独驱动该车轮,轮毂电机是电机嵌在车轮轱辘里,定子固定在轮胎上,转子固定在车轴上而不是将动力通过传动轴的形式传递到车轮。





轮边电动机驱动通常有轮毂电动机和狭义的轮边电动机两种方式。何为狭义的轮边电动机方式?轮边电机是指每个驱动车轮由单独的电动机驱动,但是电动机不是集成在车轮内,而是通过传动电机输出轴连接到车轮(这就是和轮毂点击的差异点)。





但是,安装在车身上的电动汽车电机对整车总布置的影响很大,尤其是在后轴驱动的情况下。由于车身和车轮之间存在很大的变形运动,对传动轴的万向传动也具有一定的限制。还有一点也是我没办法不担心一点,要是有这样一辆车,估计哥们儿睡觉也会担心轮子连着电机一块儿被偷走。

集中式电动机

目前我们所熟知的新能源车型例如特斯拉、北汽新能源、比亚迪纯电动系列产品、江淮iEV系列等等主流的纯电动产品均采用集中式电动机这一形式。不过随着电动车、混动车的发展,越来越多的车可能不止再仅搭载一台集中式电动机,这时可能会出现一台集中式电动机输出的动力仅传递到前轮上,另一台集中式电动机在后轮“使劲儿”(例如特斯拉各种D系列)。





那么问题来啦,怎样理解才更为直观呢?如果有人问你两者差别你就这样回答他:“单电机放置位置居中,并且同时负责两个轮子驱动的布置方式就叫做集中式电动机,特斯拉绝x不是轮边电机”。






总结 | 轮边电动机/轮毂电机驱动相对于集中电动机驱动的优点:

① 以电子差速控制技术实现转弯时内外车轮不同转速运动,适用于特种车辆。

② 取消机械差速装置有利于动力系统减轻质量,提高传动效率,降低传动噪声。

③ 简化车辆的结构,传统的离合器、变速箱、传动轴将不复存在。这也意味着节省出更多的空间。

④ 降低对电动汽车电机的性能指标要求,且具有冗余可靠性高的特点。

缺点也是很明显

① 为满足各轮运动协调,对多个电动机的同步协调控制要求高。

② 电动机的分散安装布置提出了结构布置、热管理、电磁兼容以及振动控制等多方面的技术难题。

③ 增大簧下质量和轮毂的转动惯量,对车辆的操控有所影响。

④ 怕丢
 
来源:网络 查看全部
[摘要] 今天我们来聊一聊什么是轮边电机、轮毂电机、集中式电机,技术贴值得收藏。为什么特斯拉拆了外壳只剩底盘依旧像一件工艺品,而且前后还能腾出空间拥有两个大大的行李舱?民间流传较为广泛的解读是这样说的:“特斯拉集成能力强,他们用的是轮边电机”。

57753c5844b87.jpg

刚刚的答案看似有几分道理。但是这一回答中却有着一个较为严重的错误。特斯拉电驱动系统放在了后桥两轮之间就可以称为轮边电机吗?就这一误区今天我们就来聊一聊什么是轮边电机、轮毂电机、集中式电机。

轮毂电机

轮毂电机技术又称车轮内装电机技术,因为轮毂电机具备单个车轮独立驱动的特性,所以无论是前驱、后驱还是四驱形式,它都可以比较轻松地实现,全时四驱在轮毂电机驱动的车辆上实现起来非常容易。同时轮毂电机可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向,这个本事对于特种车辆相当有价值,所以这项技术多使用在特种车辆上例如矿山车、工程车等等。
57753c9f2b5fc.jpg

 
米其林轮毂电机结构

而且应用轮毂电机可以大大简化车辆的结构,传统的离合器、变速箱、传动轴将不复存在。这也意味着节省出更多的空间。更重要的一点轮毂电机可以和传统动力并联使用,这对于混合动力车型同样很有意义。

57753d86748a1.jpg


然而在市面量产的乘用车辆上并没有一辆车型使用了此项技术,说了这么多优点量产车不用是几个意思!原因是它的一些弊端会使得其在乘用车的使用上有一点水土不服,轮毂电机要安装在轮圈内,这使得车辆的簧下质量增加首先问题就是不利于操控;第二点电涡流制动容量不高,在重型车上需要配合机械制动系统共同工作。对于电动车而言,要达到更高的制动效果则需要耗费更高的能量,在一定程度上影响了续航里程;第三如果动力输出发生细微差距那么在高速行驶中对车辆的方向控制也会造成放大数倍的失控影响。而且难以实现润滑,会使行星齿轮减速结构的齿轮磨损较快使用寿命变短,不易散热,工艺不精良噪音就会较大。在起步、顶风或爬坡等需要承载大扭矩的情况时需要大电流,很容易损坏电池和永磁体,电机效率峰值区域小,负载电流超过一定值后效率下降很快。

综上所述轮毂电机和量产乘用车的结合就目前而言依旧是喜与悲交织的一场故事。

轮边电机

所谓轮边电机是电机装在车轮边上以单独驱动该车轮,轮毂电机是电机嵌在车轮轱辘里,定子固定在轮胎上,转子固定在车轴上而不是将动力通过传动轴的形式传递到车轮。

57753d7818482.jpg

轮边电动机驱动通常有轮毂电动机和狭义的轮边电动机两种方式。何为狭义的轮边电动机方式?轮边电机是指每个驱动车轮由单独的电动机驱动,但是电动机不是集成在车轮内,而是通过传动电机输出轴连接到车轮(这就是和轮毂点击的差异点)。
57753e0211f3b.jpg


但是,安装在车身上的电动汽车电机对整车总布置的影响很大,尤其是在后轴驱动的情况下。由于车身和车轮之间存在很大的变形运动,对传动轴的万向传动也具有一定的限制。还有一点也是我没办法不担心一点,要是有这样一辆车,估计哥们儿睡觉也会担心轮子连着电机一块儿被偷走。

集中式电动机

目前我们所熟知的新能源车型例如特斯拉、北汽新能源、比亚迪纯电动系列产品、江淮iEV系列等等主流的纯电动产品均采用集中式电动机这一形式。不过随着电动车、混动车的发展,越来越多的车可能不止再仅搭载一台集中式电动机,这时可能会出现一台集中式电动机输出的动力仅传递到前轮上,另一台集中式电动机在后轮“使劲儿”(例如特斯拉各种D系列)。
57753dea7d421.jpg


那么问题来啦,怎样理解才更为直观呢?如果有人问你两者差别你就这样回答他:“单电机放置位置居中,并且同时负责两个轮子驱动的布置方式就叫做集中式电动机,特斯拉绝x不是轮边电机”。

57753c5844b87.jpg


总结 | 轮边电动机/轮毂电机驱动相对于集中电动机驱动的优点:

① 以电子差速控制技术实现转弯时内外车轮不同转速运动,适用于特种车辆。

② 取消机械差速装置有利于动力系统减轻质量,提高传动效率,降低传动噪声。

③ 简化车辆的结构,传统的离合器、变速箱、传动轴将不复存在。这也意味着节省出更多的空间。

④ 降低对电动汽车电机的性能指标要求,且具有冗余可靠性高的特点。

缺点也是很明显

① 为满足各轮运动协调,对多个电动机的同步协调控制要求高。

② 电动机的分散安装布置提出了结构布置、热管理、电磁兼容以及振动控制等多方面的技术难题。

③ 增大簧下质量和轮毂的转动惯量,对车辆的操控有所影响。

④ 怕丢
 
来源:网络